# Differences with torch.renorm [](https://gitee.com/mindspore/docs/blob/r2.3.0rc2/docs/mindspore/source_en/note/api_mapping/pytorch_diff/renorm.md) The following mapping relationships can be found in this file. | PyTorch APIs | MindSpore APIs | | :-------------------: | :-----------------------: | | torch.renorm | mindspore.ops.renorm | | torch.Tensor.renorm | mindspore.Tensor.renorm | ## torch.renorm ```text torch.renorm(input, p, dim, maxnorm, *, out=None) -> Tensor ``` For more information, see [torch.renorm](https://pytorch.org/docs/1.8.1/generated/torch.renorm.html). ## mindspore.ops.renorm ```text mindspore.ops.renorm(input, p, axis, maxnorm) ``` For more information, see [mindspore.ops.renorm](https://mindspore.cn/docs/en/r2.3.0rc2/api_python/ops/mindspore.ops.renorm.html). ## Differences API function of MindSpore is consistent with that of PyTorch. PyTorch: The data type of parameter `p` is ``float`` . MindSpore: The data type of parameter `p` is ``int`` . | Categories | Subcategories | PyTorch | MindSpore | Differences | | --- |---------------|---------| --- |-------------| | Parameters | Parameter 1 |input | input | - | | | Parameter 2 | p | p | The data type supported by PyTorch is ``float`` , the data type supported by MindSpore is ``int`` . | | | Parameter 3 | dim | axis | Different parameter names | | | Parameter 4 | maxnorm | maxnorm | - | | | Parameter 5 | out | - | For details, see [General Difference Parameter Table](https://www.mindspore.cn/docs/en/r2.3.0rc2/note/api_mapping/pytorch_api_mapping.html#general-difference-parameter-table) | ### Code Example ```python # PyTorch import torch x = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], dtype=torch.float32) out = torch.renorm(x, 2.0, 0, 5.0) print(out.numpy()) # [[0. 1. 2. 3. ] # [1.7817416 2.2271771 2.6726124 3.1180477] # [2.0908334 2.3521876 2.6135418 2.874896 ]] # MindSpore import mindspore import mindspore.ops as ops from mindspore import Tensor x = Tensor([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], dtype=mindspore.float32) out = ops.renorm(x, 2, 0, 5.0) print(out.numpy()) # [[0. 1. 2. 3. ] # [1.7817416 2.2271771 2.6726124 3.118048 ] # [2.0908334 2.3521876 2.6135418 2.874896 ]] ```