# Differences with torchvision.transforms.RandomAffine [](https://gitee.com/mindspore/docs/blob/r2.3.0rc2/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomAffine.md) ## torchvision.transforms.RandomAffine ```python class torchvision.transforms.RandomAffine(degrees, translate=None, scale=None, shear=None, interpolation=<InterpolationMode.NEAREST: 'nearest'>, fill=0, fillcolor=None, resample=None) ``` For more information, see [torchvision.transforms.RandomAffine](https://pytorch.org/vision/0.9/transforms.html#torchvision.transforms.RandomAffine). ## mindspore.dataset.vision.RandomAffine ```python class mindspore.dataset.vision.RandomAffine(degrees, translate=None, scale=None, shear=None, resample=Inter.NEAREST, fill_value=0) ``` For more information, see [mindspore.dataset.vision.RandomAffine](https://mindspore.cn/docs/en/r2.3.0rc2/api_python/dataset_vision/mindspore.dataset.vision.RandomAffine.html). ## Differences PyTorch: Apply random affine transformation to a tensor image. The rotation center position can be specified. MindSpore: Apply random affine transformation to the input image. The rotation center is in the center of the image. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | degrees | degrees | - | | | Parameter2 | translate | translate |- | | | Parameter3 | scale | scale |- | | | Parameter4 | shear | shear | - | | | Parameter5 | interpolation | resample | - | | | Parameter6 | fill | fill_value | - | | | Parameter7 | fillcolor | - | Deprecated in PyTorch, same with fill | | | Parameter8 | resample | - | Deprecated in PyTorch, same with interpolation | ## Code Example ```python from download import download from PIL import Image url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/flamingos.jpg" download(url, './flamingos.jpg', replace=True) orig_img = Image.open('flamingos.jpg') # PyTorch import torchvision.transforms as T affine_transfomer = T.RandomAffine(degrees=(30, 70), translate=(0.1, 0.3), fill=0) img_torch = affine_transfomer(orig_img) # MindSpore import mindspore.dataset.vision as vision import mindspore.dataset.transforms as transforms affine_transfomer = vision.RandomAffine(degrees=(30, 70), translate=(0.1, 0.3), fill_value=0) img_ms = affine_transfomer(orig_img) ```