# Differences between torch.optim.AdaMax and mindspore.nn.AdaMax [](https://gitee.com/mindspore/docs/blob/r2.3.0rc2/docs/mindspore/source_en/note/api_mapping/pytorch_diff/AdaMax.md) ## torch.optim.AdaMax ```python class torch.optim.AdaMax( params, lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0 ) ``` For more information, see [torch.optim.AdaMax](https://pytorch.org/docs/1.8.0/optim.html#torch.optim.AdaMax). ## mindspore.nn.AdaMax ```python class mindspore.nn.AdaMax( params, learning_rate=0.001, beta1=0.9, beta2=0.999, eps=1e-08, weight_decay=0.0, loss_scale=1.0 ) ``` For more information, see [mindspore.nn.AdaMax](https://mindspore.cn/docs/en/r2.3.0rc2/api_python/nn/mindspore.nn.AdaMax.html#mindspore.nn.AdaMax). ## Differences PyTorch and MindSpore implement different algorithms for this optimizer. Please refer to the formula on the official website for details. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | | Parameters | Parameter 1 | params | params | Consistent function | | | Parameter 2 | lr | learning_rate | Same function, different parameter names and default values | | | Parameter 3 | betas | beta1, beta2 | Same function, different parameter names| | | Parameter 4 | eps | eps | Consistent function | | | Parameter 5 | weight_decay | weight_decay | Consistent function | | | Parameter 6 | - | loss_scale | MindSpore `loss_scale` is the gradient scaling factor, and PyTorch does not have this parameter | ### Code Example ```python # MindSpore import mindspore from mindspore import nn net = nn.Dense(2, 3) optimizer = nn.AdaMax(net.trainable_params()) criterion = nn.MAELoss(reduction="mean") def forward_fn(data, label): logits = net(data) loss = criterion(logits, label) return loss, logits grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) def train_step(data, label): (loss, _), grads = grad_fn(data, label) optimizer(grads) return loss # PyTorch import torch model = torch.nn.Linear(2, 3) criterion = torch.nn.L1Loss(reduction='mean') optimizer = torch.optim.AdaMax(model.parameters()) def train_step(data, label): optimizer.zero_grad() output = model(data) loss = criterion(output, label) loss.backward() optimizer.step() ```