# Differences with torch.zeros [](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/zeros.md) ## torch.zeros ```text torch.zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor ``` For more information, see [torch.zeros](https://pytorch.org/docs/1.8.1/generated/torch.zeros.html). ## mindspore.ops.zeros ```text mindspore.ops.zeros(size, dtype=dtype) -> Tensor ``` For more information, see [mindspore.ops.zeros](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/ops/mindspore.ops.zeros.html). ## Differences PyTorch: Generate a Tensor of size `*size` whose elements are all 0. MindSpore: Generate a Tensor of shape `size` whose elements are all 0. | Categories | Subcategories | PyTorch | MindSpore | Difference | |------------|---------------|---------------|-----------|----------------------------------------------------| | Parameters | Parameter 1 | size | size | MindSpore supports input of int, tuple or Tensor type | | | Parameter 2 | out | - | Not involved | | | Parameter 3 | dtype | dtype | The parameter is consistent. | | | Parameter 4 | layout | - | Not involved | | | Parameter 5 | device | - | Not involved | | | Parameter 6 | requires_grad | - | Not involved | ### Code Example 1 The two APIs achieve the same function and have the same usage. ```python # PyTorch import torch from torch import tensor output = torch.zeros(2, 2, dtype=torch.float32) print(output.numpy()) # [[0. 0.] # [0. 0.]] # MindSpore import numpy as np import mindspore import mindspore.ops as ops import mindspore as ms from mindspore import Tensor output = ops.zeros((2, 2), dtype=ms.float32).asnumpy() print(output) # [[0. 0.] # [0. 0.]] ```