# Differences with torch.scatter_add [](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/scatter_add.md) ## torch.scatter_add ```python torch.scatter_add(input, dim, index, src) ``` For more information, see [torch.scatter_add](https://pytorch.org/docs/1.8.1/generated/torch.scatter_add.html). ## mindspore.ops.tensor_scatter_elements ```python mindspore.ops.tensor_scatter_elements(input_x, indices, updates, axis, reduction) ``` For more information, see [mindspore.ops.tensor_scatter_elements](https://www.mindspore.cn/docs/en/r2.3.0rc1/api_python/ops/mindspore.ops.tensor_scatter_elements.html). ## Differences PyTorch: For all dimensions `d` , `index.size(d) <= src.size(d)` is required, i.e. `index` can select some or all of the data of `src` to be scattered into `input` . MindSpore: The shape of `indices` must be the same as the shape of `updates` , i.e. all data of `updates` will be scattered into `input_x` by `indices` . There is no difference in function. | Categories | Subcategories | PyTorch | MindSpore | Differences | | ---------- | ------------- | ------------ | --------- | ------------- | | Parameters | Parameter 1 | input | input_x | Same function, different parameter names | | | Parameter 2 | dim | axis | Same function, different parameter names | | | Parameter 3 | index | indices | For MindSpore, the shape of `indices` must be the same as the shape of `updates` . For PyTorch, `index.size(d) <= src.size(d)` is required for all dimensions `d` | | | Parameter 4 | src | updates | Same function | | | Parameter 5 | | reduction | `reduction` must be set as "add" | ### Code Example ```python # PyTorch import torch import numpy as np x = torch.tensor(np.zeros((5, 5)), dtype=torch.float32) src = torch.tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), dtype=torch.float32) index = torch.tensor(np.array([[0, 1], [0, 1], [0, 1]]), dtype=torch.int64) out = torch.scatter_add(x=x, dim=1, index=index, src=src) print(out) # tensor([[1., 2., 0., 0., 0.], # [4., 5., 0., 0., 0.], # [7., 8., 0., 0., 0.], # [0., 0., 0., 0., 0.], # [0., 0., 0., 0., 0.]]) # MindSpore import mindspore as ms import numpy as np x = ms.Tensor(np.zeros((5, 5)), dtype=ms.float32) src = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), dtype=ms.float32) index = ms.Tensor(np.array([[0, 1, 2], [0, 1, 2], [0, 1, 2]]), dtype=ms.int64) out = ms.ops.tensor_scatter_elements(input_x=x, axis=1, indices=index, updates=src, reduction="add") print(out) # [[1. 2. 3. 0. 0.] # [4. 5. 6. 0. 0.] # [7. 8. 9. 0. 0.] # [0. 0. 0. 0. 0.] # [0. 0. 0. 0. 0.]] ```