# Differences with torch.ones [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ones.md) ## torch.ones ```text torch.ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor ``` For more information, see [torch.ones](https://pytorch.org/docs/1.8.1/generated/torch.ones.html). ## mindspore.ops.ones ```text mindspore.ops.ones(shape, dtype=dtype) -> Tensor ``` For more information, see [mindspore.ops.ones](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/ops/mindspore.ops.ones.html). ## Differences PyTorch: Generate a Tensor of size `*size` with a padding value of 1. MindSpore: MindSpore API implements the same function as TensorFlow, and only the parameter names are different. | Categories | Subcategories | PyTorch | MindSpore | Difference | |------------|---------------|---------------|-----------|----------------------------------------------------| | Parameters | Parameter 1 | size | shape | MindSpore supports input of int, tuple or Tensor type | | | Parameter 2 | out | - | Not involved | | | Parameter 3 | dtype | dtype | The parameter is consistent | | | Parameter 4 | layout | - | Not involved | | | Parameter 5 | device | - | Not involved | | | Parameter 6 | requires_grad | - | Not involved | ### Code Example 1 The two APIs achieve the same function and have the same usage. ```python # PyTorch import torch from torch import tensor output = torch.ones(2, 2, dtype=torch.float32) print(output.numpy()) # [[1. 1.] # [1. 1.]] # MindSpore import numpy as np import mindspore import mindspore.ops as ops import mindspore as ms from mindspore import Tensor output = ops.ones((2, 2), dtype=ms.float32).asnumpy() print(output) # [[1. 1.] # [1. 1.]] ```