# Differences with torch.min [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/min.md) ## torch.min ```python torch.min(input, dim, keepdim=False, *, out=None) ``` For more information, see [torch.min](https://pytorch.org/docs/1.8.1/torch.html#torch.min). ## mindspore.ops.min ```python mindspore.ops.min(input, axis=None, keepdims=False, *, initial=None, where=None) ``` For more information, see [mindspore.ops.min](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/ops/mindspore.ops.min.html). ## Differences PyTorch: Output tuple(min, index of min). MindSpore: When the axis is None or the shape is empty in MindSpore, the keepdims and subsequent parameters are not effective, and the function is consistent with torch.min(input), and the index returned is fixed at 0. Otherwise, the output is a tuple (min, index of min), which is consistent with torch.min(input, dim, keepdim=False, *, out=None). | Categories | Subcategories |PyTorch | MindSpore | Difference | | ---- | ----- | ------- | --------- | ------------- | |Parameters | Parameter 1 | input | input | Consistent | | | Parameter 2 | dim | axis | Same function, different parameter names | | | Parameter 3 | keepdim | keepdims | Same function, different parameter names | | | Parameter 4 | - |initial | Not involved | | | Parameter 5 | - |where | Not involved | | | Parameter 6 | out | - | Not involved | ## Code Example ```python import mindspore as ms import mindspore.ops as ops import torch import numpy as np np_x = np.array([[-0.0081, -0.3283, -0.7814, -0.0934], [1.4201, -0.3566, -0.3848, -0.1608], [-0.0446, -0.1843, -1.1348, 0.5722], [-0.6668, -0.2368, 0.2790, 0.0453]]).astype(np.float32) # mindspore input_x = ms.Tensor(np_x) output, index = ops.min(input_x, axis=1) print(output) # [-0.7814 -0.3848 -1.1348 -0.6668] print(index) # [2 2 2 0] # torch input_x = torch.tensor(np_x) output, index = torch.min(input_x, dim=1) print(output) # tensor([-0.7814, -0.3848, -1.1348, -0.6668]) print(index) # tensor([2, 2, 2, 0]) ```