# Differences with torchtext.data.functional.load_sp_model [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/load_sp_model.md) ## torchtext.data.functional.load_sp_model ```python torchtext.data.functional.load_sp_model( spm ) ``` For more information, see [torchtext.data.functional.load_sp_model](https://pytorch.org/text/0.9.0/data_functional.html#load-sp-model). ## mindspore.dataset.text.SentencePieceTokenizer ```python class mindspore.dataset.text.SentencePieceTokenizer(mode, out_type) ``` For more information, see [mindspore.dataset.text.SentencePieceTokenizer](https://www.mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset_text/mindspore.dataset.text.SentencePieceTokenizer.html#mindspore.dataset.text.SentencePieceTokenizer). ## Differences PyTorch: Load a sentencepiece model. MindSpore: Construct a SentencePiece tokenizer, including load a sentencepiece model. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | spm | mode | MindSpore support SentencePieceVocab object or path of SentencePiece model | | | Parameter2 | - |out_type | The output type of tokenizer | ## Code Example ```python from download import download url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/sentencepiece.bpe.model" download(url, './sentencepiece.bpe.model', replace=True) # PyTorch from torchtext.data.functional import load_sp_model model = load_sp_model("sentencepiece.bpe.model") # MindSpore import mindspore.dataset.text as text model = text.SentencePieceTokenizer("sentencepiece.bpe.model", out_type=text.SPieceTokenizerOutType.STRING) ```