# Differences with torch.nn.functional.dropout2d [](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/dropout2d.md) ## torch.nn.functional.dropout2d ```python torch.nn.functional.dropout2d(input, p=0.5, training=True, inplace=False) -> Tensor ``` For more information, see [torch.nn.functional.dropout2d](https://pytorch.org/docs/1.8.1/nn.functional.html#torch.nn.functional.dropout2d). ## mindspore.ops.dropout2d ```python mindspore.ops.dropout2d(input, p=0.5, training=True) -> Tensor ``` For more information, see [mindspore.ops.dropout2d](https://www.mindspore.cn/docs/en/r2.3.0rc1/api_python/ops/mindspore.ops.dropout2d.html). ## Differences API function of MindSpore is consistent with that of PyTorch, with differences in the supported data types for parameters. PyTorch: During training, dropout2d randomly zeroes some channels of the input tensor with probability p from a Bernoulli distribution, each channel will be zeroed out independently on every forward call which based on Bernoulli distribution probability p. Zeroing some channels of the input tensor is proved that it can effectively reduce over fitting and prevent neuronal coadaptation. MindSpore: Mindspore only supports a tensor with a rank of 4 as input. | Categories | Subcategories |PyTorch | MindSpore | Difference | | ---- | ----- | ------- | --------- | ----| | Parameters | Parameter 1 | input | input | Mindspore only supports a tensor with a rank of 4 as input | | | Parameter 2 | p | p | - | | | Parameter 3 | training | training | - | | | Parameter 4 | inplace| - | - | ### Code Example 1 ```python # PyTorch import torch input = torch.ones(3, 2, 4) output = torch.nn.functional.dropout2d(input) print(output.shape) # torch.Size([3, 2, 4]) # MindSpore import mindspore as ms from mindspore import ops from mindspore import Tensor import numpy as np input = Tensor(np.ones([3, 2, 4]), ms.float32) input = input.expand_dims(0) output = ops.dropout2d(input) output = output.squeeze(0) print(output.shape) # (3, 2, 4) ``` ### Code Example 2 ```python # PyTorch import torch input = torch.ones(1, 2, 3, 2, 4) output = torch.nn.functional.dropout2d(input) print(output.shape) # torch.Size([1, 2, 3, 2, 4]) # MindSpore import mindspore as ms from mindspore import ops from mindspore import Tensor import numpy as np input = Tensor(np.ones([1, 2, 3, 2, 4]), ms.float32) input = input.squeeze(0) output = ops.dropout2d(input) output = output.expand_dims(0) print(output.shape) # (1, 2, 3, 2, 4) ```