# Differences with torch.bucketize [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/bucketize.md) ## torch.bucketize ```python torch.bucketize(input, boundaries, *, out_int32=False, right=False, out=None) ``` For more information, see [torch.bucketize](https://pytorch.org/docs/1.8.1/torch.html#torch.bucketize). ## mindspore.ops.bucketize ```python class mindspore.ops.bucketize(input, boundaries, *, right=False) ``` For more information, see [mindspore.ops.bucketize](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/ops/mindspore.ops.bucketize.html#mindspore.ops.bucketize). ## Usage MindSpore API functions is consistent with that of PyTorch, with differences in the data types supported by the parameters. PyTorch: `input` supports the scalar and Tensor types. `boundaries` supports the Tensor type, and the data type of the returned index can be specified via `out_int32`. MindSpore: `input` supports Tensor type. `boundaries` supports list type, no `out_int32` parameter. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | | Parameters | Parameter 1 | input | input | Consistent functiona, different supported data types | | | Parameter 2 | boundaries | boundaries | Consistent function, different supported data types | | | Parameter 3 | out_int32 | - | PyTorch `out_int32` specifies the type of index to return, while MindSpore does not have this parameter. | | | Parameter 4 | right | right | Consistent | | | Parameter 5 | out | - | PyTorch `out` can obtain outputs, while MindSpore does not have this parameter.| ## Code Example ```python import torch boundaries = torch.tensor([1, 3, 5, 7, 9]) v = torch.tensor([[3, 6, 9], [3, 6, 9]]) out1 = torch.bucketize(v, boundaries) out2 = torch.bucketize(v, boundaries, right=True) print(out1) # Out: # tensor([[1, 3, 4], # [1, 3, 4]]) print(out2) # Out: # tensor([[2, 3, 5], # [2, 3, 5]]) from mindspore import Tensor, ops boundaries = [1, 3, 5, 7, 9] v = Tensor([[3, 6, 9], [3, 6, 9]]) out1 = ops.bucketize(v, boundaries) out2 = ops.bucketize(v, boundaries, right=True) print(out1) # Out: # [[1 3 4] # [1 3 4]] print(out2) # Out: # [[2 3 5] # [2 3 5]] ```