# Differences with torch.amin [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/amin.md) The following mapping relationships can be found in this file. | PyTorch APIs | MindSpore APIs | | :-------------------: | :-----------------------: | | torch.amin | mindspore.ops.amin | | torch.Tensor.amin | mindspore.Tensor.amin | ## torch.amin ```text torch.amin(input, dim, keepdim=False, *, out=None) -> Tensor ``` For more information, see [torch.amin](https://pytorch.org/docs/1.8.1/generated/torch.amin.html#torch.amin). ## mindspore.ops.amin ```text mindspore.ops.amin(x, axis=(), keepdims=False) -> Tensor ``` For more information, see [mindspore.ops.amin](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/ops/mindspore.ops.amin.html). ## Differences PyTorch: Find the minimum element of `input` according to the specified `dim`. `keepdim` controls whether the output and the input have the same dimension. `out` can get the output. MindSpore: Find the minimum element of `x` according to the specified `axis`. The `keepdims` function is identical to PyTorch. MindSpore does not have `out` parameter. MindSpore `axis` has a default value, and finds the minimum value of all elements of `x` if `axis` is the default value. | Categories | Subcategories| PyTorch | MindSpore |Differences | | ---- | ----- | ------- | --------- |------------------ | | Parameters | Parameter 1 | input | x | Same function, different parameter names | | | Parameter 2 | dim | axis | MindSpore `axis` has a default value, while PyTorch `dim` has no default value | | | Parameter 3 | keepdim | keepdims | Same function, different parameter names | | | Parameter 4 | out | - | PyTorch `out` can get the output. MindSpore does not have this parameter | ### Code Example ```python # PyTorch import torch input = torch.tensor([[1, 2, 3], [3, 2, 1]], dtype=torch.float32) print(torch.amin(input, dim=0, keepdim=True)) # tensor([[1., 2., 1.]]) # MindSpore import mindspore x = mindspore.Tensor([[1, 2, 3], [3, 2, 1]], dtype=mindspore.float32) print(mindspore.ops.amin(x, axis=0, keepdims=True)) # [[1. 2. 1.]] ```