# Differences with torch.all [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/all.md) The following mapping relationships can be found in this file. | PyTorch APIs | MindSpore APIs | | :-------------------: | :-----------------------: | | torch.all | mindspore.ops.all | | torch.Tensor.all | mindspore.Tensor.all | ## torch.all ```text torch.all(input, dim, keepdim=False, *, out=None) -> Tensor ``` For more information, see [torch.all](https://pytorch.org/docs/1.8.1/generated/torch.all.html#torch.all). ## mindspore.ops.all ```text mindspore.ops.all(x, axis=(), keep_dims=False) -> Tensor ``` For more information, see [mindspore.ops.all](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/ops/mindspore.ops.all.html). ## Differences PyTorch: Perform logic AND on the elements of `input` according to the specified `dim`. `keepdim` controls whether the output and input have the same dimension. `out` can fetch the output. MindSpore: Perform logic AND on the elements of `x` according to the specified `axis`. The `keep_dims` has the same function as PyTorch, and MindSpore does not have the `out` parameter. MindSpore has a default value for `axis`, and performs the logical AND on all elements of `x` if `axis` is the default. | Categories | Subcategories| PyTorch | MindSpore |Differences | | ---- | ----- | ------- | --------- |------------------ | | Parameters | Parameter 1 | input | x | Same function, different parameter names | | | Parameter 2 | dim | axis | PyTorch must pass `dim` and only one integer. MindSpore `axis` can be passed as an integer, a tuples of integers or a list of integers | | | Parameter 3 | keepdim | keep_dims | Same function, different parameter names | | | Parameter 4 | out | - | PyTorch `out` can get the output. MindSpore does not have this parameter | ### Code Example ```python # PyTorch import torch input = torch.tensor([[False, True, False, True], [False, True, False, False]]) print(torch.all(input, dim=0, keepdim=True)) # tensor([[False, True, False, False]]) # MindSpore import mindspore x = mindspore.Tensor([[False, True, False, True], [False, True, False, False]]) print(mindspore.ops.all(x, axis=0, keep_dims=True)) # [[False True False False]] ```