# Differences with torchtext.data.functional.simple_space_split [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/WhitespaceTokenizer.md) ## torchtext.data.functional.simple_space_split ```python torchtext.data.functional.simple_space_split(iterator) ``` For more information, see [torchtext.data.functional.simple_space_split](https://pytorch.org/text/0.9.0/data_functional.html#torchtext.data.functional.simple_space_split). ## mindspore.dataset.text.WhitespaceTokenizer ```python class mindspore.dataset.text.WhitespaceTokenizer(with_offsets=False) ``` For more information, see [mindspore.dataset.text.WhitespaceTokenizer](https://www.mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset_text/mindspore.dataset.text.WhitespaceTokenizer.html#mindspore.dataset.text.WhitespaceTokenizer). ## Differences PyTorch: Tokenize a string on with whitespaces. MindSpore: Tokenize a string on with whitespaces. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | - | with_offsets | Whether to output offsets of tokens | ## Code Example ```python # PyTorch from torchtext.data.functional import simple_space_split list_a = "sentencepiece encode as pieces" result = simple_space_split([list_a]) print(list(result)) # Out: [['sentencepiece', 'encode', 'as', 'pieces']] # MindSpore import mindspore.dataset.text as text result = text.WhitespaceTokenizer()(list_a) print(list(result)) # Out: ['sentencepiece', 'encode', 'as', 'pieces'] ```