# Differences with torchvision.datasets.VOCSegmentation [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/VOCSegmentation.md) ## torchvision.datasets.VOCSegmentation ```python class torchvision.datasets.VOCSegmentation( root: str, year: str='2012', image_set: str='train', download: bool=False, transform: Optional[Callable]=None, target_transform: Optional[Callable]=None, transforms: Optional[Callable]=None ) ``` For more information, see [torchvision.datasets.VOCSegmentation](https://pytorch.org/vision/0.9/datasets.html#torchvision.datasets.VOCSegmentation). ## mindspore.dataset.VOCDataset ```python class mindspore.dataset.VOCDataset( dataset_dir, task="Segmentation", usage="train", class_indexing=None, num_samples=None, num_parallel_workers=None, shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None, cache=None, extra_metadata=False, decrypt=None ) ``` For more information, see [mindspore.dataset.VOCDataset](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset/mindspore.dataset.VOCDataset.html#mindspore.dataset.VOCDataset). ## Differences PyTorch: Pascal VOC Segmentation Dataset. MindSpore: A source dataset for reading and parsing VOC dataset. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | root | dataset_dir | - | | | Parameter2 | year | - | Not supported by MindSpore | | | Parameter3 | image_set | usage |- | | | Parameter4 | download | - | Not supported by MindSpore | | | Parameter5 | transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter6 | target_transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter7 | transforms | - | Supported by `mindspore.dataset.map` operation | | | Parameter8 | - | task | Set the task type of reading voc data | | | Parameter9 | - | class_indexing | A str-to-int mapping from label name to index | | | Parameter10 | - | num_samples | The number of images to be included in the dataset | | | Parameter11 | - | num_parallel_workers | Number of worker threads to read the data | | | Parameter12 | - | shuffle | Whether to perform shuffle on the dataset | | | Parameter13 | - | decode | Whether to decode the images after reading | | | Parameter14 | - | sampler | Object used to choose samples from the dataset | | | Parameter15 | - | num_shards | Number of shards that the dataset will be divided into | | | Parameter16 | - | shard_id | The shard ID within num_shards | | | Parameter17 | - | cache | Use tensor caching service to speed up dataset processing | | | Parameter18 | - | extra_metadata | Flag to add extra meta-data to row | | | Parameter19 | - | decrypt | Image decryption function | ## Code Example ```python import mindspore.dataset as ds import torchvision.transforms as T import torchvision.datasets as datasets from torch.utils.data import DataLoader # In MindSpore, the generated dataset with different task setting has different output columns. voc_dataset_dir = "/path/to/voc_dataset_directory/" # task = Segmentation, output columns: [image, dtype=uint8], [target,dtype=uint8]. dataset = ds.VOCDataset(dataset_dir=voc_dataset_dir, task="Segmentation", usage="train") for item in dataset: print("item:", item[0]) print(len(item[0])) break # Out: # item: [255 216 255 ... 73 255 217] # 52544 # In torch, the output will be result of transform, eg. RandomCrop root = "/path/to/voc_dataset_directory2/" dataset = datasets.VOCSegmentation(root, image_set='train', year='2012', transform=T.RandomCrop(300)) print(dataset) print(type(dataset)) ```