# Differences with torchvision.transforms.ToPILImage [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ToPIL.md) ## torchvision.transforms.ToPILImage ```python class torchvision.transforms.ToPILImage( mode=None ) ``` For more information, see [torchvision.transforms.ToPILImage](https://pytorch.org/vision/0.9/transforms.html#torchvision.transforms.ToPILImage). ## mindspore.dataset.vision.ToPIL ```python class mindspore.dataset.vision.ToPIL ``` For more information, see [mindspore.dataset.vision.ToPIL](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset_vision/mindspore.dataset.vision.ToPIL.html#mindspore.dataset.vision.ToPIL). ## Differences PyTorch: Converts a tensor or Numpy array to PIL Image. The input can be a torch Tensor in the format of , or a numpy array in the format of . MindSpore: Convert a Numpy array in format (such as decoded image) into a PIL image, color space is not support to specified. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | mode | - | Color space of input data | ## Code Example ```python import numpy as np import torch as T from torchvision.transforms import ToPILImage import mindspore.dataset.vision as vision # In MindSpore, ToPIL transform the numpy.ndarray to PIL Image. image = np.random.random((64,64)) img = vision.ToPIL()(image) img.show() # Out: # window of PIL image # In torch, ToPILImage transforms the input to PIL Image. image = T.randn((64, 64)) img = ToPILImage()(image) img.show() # Out: # window of PIL image ```