# Differences with torchaudio.datasets.TEDLIUM [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/TEDLIUM.md) ## torchaudio.datasets.TEDLIUM ```python class torchaudio.datasets.TEDLIUM( root: str, release: str = 'release1', subset: str = None, download: bool = False, audio_ext: str = '.sph') ``` For more information, see [torchaudio.datasets.TEDLIUM](https://pytorch.org/audio/0.8.0/datasets.html#tedlium). ## mindspore.dataset.TedliumDataset ```python class mindspore.dataset.TedliumDataset( dataset_dir, release, usage=None, extensions=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None) ``` For more information, see [mindspore.dataset.TedliumDataset](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset/mindspore.dataset.TedliumDataset.html#mindspore.dataset.TedliumDataset). ## Differences PyTorch: Read the Tedlium dataset. MindSpore: Read the Tedlium dataset. Downloading dataset from web is not supported. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | root | dataset_dir | - | | | Parameter2 | release | release |- | | | Parameter3 | subset | usage |- | | | Parameter4 | download | - | Not supported by MindSpore | | | Parameter5 | audio_ext | extensions |- | | | Parameter6 | - | num_samples | The number of images to be included in the dataset | | | Parameter7 | - | num_parallel_workers | Number of worker threads to read the data | | | Parameter8 | - | shuffle | Whether to perform shuffle on the dataset | | | Parameter9 | - | sampler | Object used to choose samples from the dataset | | | Parameter10 | - | num_shards | Number of shards that the dataset will be divided into | | | Parameter11 | - | shard_id | The shard ID within num_shards | | | Parameter12 | - | cache | Use tensor caching service to speed up dataset processing | ## Code Example ```python # PyTorch import torchaudio.datasets as datasets from torch.utils.data import DataLoader root = "/path/to/dataset_directory/" dataset = datasets.TEDLIUM(root, release='release1') dataloader = DataLoader(dataset) # MindSpore import mindspore.dataset as ds # Download Tedlium dataset files, unzip into the following structure # . # └──TEDLIUM_release1 # └── dev # ├── sph # ├── AlGore_2009.sph # ├── BarrySchwartz_2005G.sph # ├── stm # ├── AlGore_2009.stm # ├── BarrySchwartz_2005G.stm # └── test # ├── sph # ├── AimeeMullins_2009P.sph # ├── BillGates_2010.sph # ├── stm # ├── AimeeMullins_2009P.stm # ├── BillGates_2010.stm # └── train # ├── sph # ├── AaronHuey_2010X.sph # ├── AdamGrosser_2007.sph # ├── stm # ├── AaronHuey_2010X.stm # ├── AdamGrosser_2007.stm # └── readme # └── TEDLIUM.150k.dic root = "/path/to/dataset_directory/" ms_dataloader = ds.TedliumDataset(root, release='release1') ```