# Differences with torch.optim.SparseAdam [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SparseAdam.md) ## torch.optim.SparseAdam ```python class torch.optim.SparseAdam( params, lr=0.001, betas=(0.9, 0.999), eps=1e-08 ) ``` For more information, see [torch.optim.SparseAdam](https://pytorch.org/docs/1.8.0/optim.html#torch.optim.SparseAdam). ## mindspore.nn.LazyAdam ```python class mindspore.nn.LazyAdam( params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False, use_nesterov=False, weight_decay=0.0, loss_scale=1.0 ) ``` For more information, see [mindspore.nn.LazyAdam](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/nn/mindspore.nn.LazyAdam.html#mindspore.nn.LazyAdam). ## Differences `torch.optimize.SparseAdam` is an Adam algorithm in PyTorch specifically for sparse scenarios. `mindspore.nn.LazyAdam` can be used for both regular and sparse scenarios: - `mindspore.nn.LazyAdam` is consistent with `torch.optimize.SparseAdam` with default parameters when the input gradient is a sparse Tensor, but `mindspore.nn.LazyAdam` currently only supports CPU backends; - When the input gradient is a non-sparse Tensor, `mindspore.nn.LazyAdam` automatically executes the `mindspore.nn.Adam` algorithm, and supports CPU/GPU/Ascend backends. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | | Parameters | Parameter 1 | params | params | Consistent function | | | Parameter 2 | lr | learning_rate | Same function, different parameter names | | | Parameter 3 | betas | beta1, beta2 | Same function, different parameter names | | | Parameter 4 | eps | eps | Consistent function | | | Parameter 5 | - | use_locking | MindSpore `use_locking` indicates whether parameter updates are protected by locking, and PyTorch does not have this parameter | | | Parameter 6 | - | use_nesterov | Whether MindSpore `use_nesterov` uses the NAG algorithm to update the gradient, and PyTorch does not have this parameter | | | Parameter 7 | - | weight_decay | PyTorch does not have this parameter | | | Parameter 8 | - | loss_scale | MindSpore's `loss_scale` is the gradient scaling factor, and PyTorch does not have this parameter | ### Code Example ```python # MindSpore. import mindspore from mindspore import nn net = nn.Dense(2, 3) optimizer = nn.LazyAdam(net.trainable_params()) criterion = nn.MAELoss(reduction="mean") def forward_fn(data, label): logits = net(data) loss = criterion(logits, label) return loss, logits grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) def train_step(data, label): (loss, _), grads = grad_fn(data, label) optimizer(grads) return loss # PyTorch import torch model = torch.nn.Linear(2, 3) criterion = torch.nn.L1Loss(reduction='mean') optimizer = torch.optim.SparseAdam(model.parameters()) def train_step(data, label): optimizer.zero_grad() output = model(data) loss = criterion(output, label) loss.backward() optimizer.step() ```