# Differences with torch.nn.Sigmoid [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Sigmoid.md) ## torch.nn.Sigmoid ```text class torch.nn.Sigmoid()(input) -> Tensor ``` For more information, see [torch.nn.Sigmoid](https://pytorch.org/docs/1.8.1/generated/torch.nn.Sigmoid.html). ## mindspore.nn.Sigmoid ```text class mindspore.nn.Sigmoid()(input_x) -> Tensor ``` For more information, see [mindspore.nn.Sigmoid](https://www.mindspore.cn/docs/en/r2.3.0rc1/api_python/nn/mindspore.nn.Sigmoid.html). ## Differences PyTorch: Compute Sigmoid activation function element-wise, which maps the input to between 0 and 1. MindSpore: MindSpore API implements the same functionality as PyTorch, and only the input parameter names after instantiation are different. | Categories | Subcategories |PyTorch | MindSpore | Difference | | :-: | :-: | :-: | :-: |:-:| |Input | Single input | input | input_x |Same function, different parameter names | ### Code Example > The two APIs achieve the same function and have the same usage. ```python # PyTorch import torch from torch import tensor input_x = tensor([-1, -2, 0, 2, 1], dtype=torch.float32) sigmoid = torch.nn.Sigmoid() output = sigmoid(input_x).numpy() print(output) # [0.26894143 0.11920292 0.5 0.880797 0.7310586 ] # MindSpore import mindspore from mindspore import Tensor input_x = Tensor([-1, -2, 0, 2, 1], mindspore.float32) sigmoid = mindspore.nn.Sigmoid() output = sigmoid(input_x) print(output) # [0.26894143 0.11920292 0.5 0.8807971 0.7310586 ] ```