# Differences with torchtext.data.functional.sentencepiece_tokenizer [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/SentencePieceTokenizer_Out_INT.md) ## torchtext.data.functional.sentencepiece_tokenizer ```python torchtext.data.functional.sentencepiece_tokenizer( sp_model ) ``` For more information, see [torchtext.data.functional.sentencepiece_tokenizer](https://pytorch.org/text/0.9.0/data_functional.html#sentencepiece-tokenizer). ## mindspore.dataset.text.SentencePieceTokenizer ```python class mindspore.dataset.text.SentencePieceTokenizer( mode, out_type ) ``` For more information, see [mindspore.dataset.text.SentencePieceTokenizer](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset_text/mindspore.dataset.text.SentencePieceTokenizer.html#mindspore.dataset.text.SentencePieceTokenizer). ## Differences PyTorch: Returns a generator that converts text into string based on the input sentencepiece tokenizer model. MindSpore: According to the incoming sentencepiece model, the input text is segmented and marked; the output type is string or int type. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | sp_model | mode | MindSpore support SentencePieceVocab object or path of SentencePiece model | | | Parameter2 | - |out_type | The output type of tokenizer | ## Code Example ```python from download import download url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/sentencepiece.bpe.model" download(url, './sentencepiece.bpe.model', replace=True) # PyTorch from torchtext.data.functional import load_sp_model, sentencepiece_tokenizer list_a = "sentencepiece encode as pieces" model = load_sp_model("./sentencepiece.bpe.model") sp_id_generator = sentencepiece_tokenizer(model) print(list(sp_id_generator([list_a]))) # Out: [['▁sentence', 'piece', '▁en', 'code', '▁as', '▁pieces']] # MindSpore import mindspore.dataset.text as text sp_id_generator = text.SentencePieceTokenizer("./sentencepiece.bpe.model", out_type=text.SPieceTokenizerOutType.STRING) print(list(sp_id_generator(list_a))) # Out: ['▁sentence', 'piece', '▁en', 'code', '▁as', '▁pieces'] ```