# Differences with torchvision.transforms.RandomResizedCrop [](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RandomResizedCrop.md) ## torchvision.transforms.RandomResizedCrop ```python class torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=InterpolationMode.BILINEAR) ``` For more information, see [torchvision.transforms.RandomResizedCrop](https://pytorch.org/vision/0.9/transforms.html#torchvision.transforms.RandomResizedCrop). ## mindspore.dataset.vision.RandomResizedCrop ```python class mindspore.dataset.vision.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Inter.BILINEAR, max_attempts=10) ``` For more information, see [mindspore.dataset.vision.RandomResizedCrop](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset_vision/mindspore.dataset.vision.RandomResizedCrop.html). ## Differences PyTorch: Crop a random portion of image and resize it to a given size. MindSpore: Crop a random portion of image and resize it to a given size. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | size | size | - | | | Parameter2 | scale | scale |- | | | Parameter3 | ratio | ratio | - | | | Parameter4 | interpolation | interpolation | - | | | Parameter5 | - | max_attempts | The maximum number of attempts to propose a valid crop_area | ## Code Example ```python from download import download from PIL import Image url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/flamingos.jpg" download(url, './flamingos.jpg', replace=True) orig_img = Image.open('flamingos.jpg') # PyTorch import torchvision.transforms as T op = T.RandomResizedCrop((32, 32), scale=(0.08, 1.0), ratio=(0.75, 0.8)) img_torch =op(orig_img) print(img_torch.size) # Out: (32, 32) # MindSpore import mindspore.dataset.vision as vision op = vision.RandomResizedCrop((32, 32), scale=(0.08, 1.0), ratio=(0.75, 0.8)) img_ms = op(orig_img) print(img_ms.size) # Out: (32, 32) ```