# Differences with torch.optim.RMSProp [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/RMSProp.md) ## torch.optim.RMSProp ```python class torch.optim.RMSProp( params, lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False ) ``` For more information, see [torch.optim.RMSProp](https://pytorch.org/docs/1.8.0/optim.html#torch.optim.RMSProp). ## mindspore.nn.RMSProp ```python class mindspore.nn.RMSProp( params, learning_rate=0.1, decay=0.9, momentum=0.0, epsilon=1e-10, use_locking=False, centered=False, loss_scale=1.0, weight_decay=0.0 ) ``` For more information, see [mindspore.nn.RMSProp](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/nn/mindspore.nn.RMSProp.html#mindspore.nn.RMSProp). ## Differences PyTorch and MindSpore implement different algorithms for this optimizer. Please refer to the formula on the official website for details. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | | Parameters | Parameter 1 | params | params | Consistent function | | | Parameter 2 | lr | learning_rate | Consistent function, different parameter names and default values | | | Parameter 3 | alpha | decay | Consistent function, different parameter names and default values | | | Parameter 4 | eps | epsilon | Consistent function, different parameter names and default values | | | Parameter 5 | weight_decay | weight_decay | Consistent function | | | Parameter 6 | momentum | momentum | Consistent function | | | Parameter 7 | centered | centered | Consistent function | | | Parameter 8 | - | use_locking | MindSpore `use_locking` controls whether to update the network weights, and PyTorch does not have this parameter| | | Parameter 9 | - | loss_scale | MindSpore `loss_scale` is the gradient scaling factor, and PyTorch does not have this parameter | ### Code Example ```python # MindSpore import mindspore from mindspore import nn net = nn.Dense(2, 3) optimizer = nn.RMSProp(net.trainable_params()) criterion = nn.MAELoss(reduction="mean") def forward_fn(data, label): logits = net(data) loss = criterion(logits, label) return loss, logits grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) def train_step(data, label): (loss, _), grads = grad_fn(data, label) optimizer(grads) return loss # PyTorch import torch model = torch.nn.Linear(2, 3) criterion = torch.nn.L1Loss(reduction='mean') optimizer = torch.optim.RMSProp(model.parameters()) def train_step(data, label): optimizer.zero_grad() output = model(data) loss = criterion(output, label) loss.backward() optimizer.step() ```