# Differences with torchvision.transforms.Normalize [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Normalize.md) ## torchvision.transforms.Normalize ```python class torchvision.transforms.Normalize(mean, std, inplace=False) ``` For more information, see [torchvision.transforms.Normalize](https://pytorch.org/vision/0.9/transforms.html#torchvision.transforms.Normalize). ## mindspore.dataset.vision.Normalize ```python class mindspore.dataset.vision.Normalize(mean, std, is_hwc=True) ``` For more information, see [mindspore.dataset.vision.Normalize](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset_vision/mindspore.dataset.vision.Normalize.html). ## Differences PyTorch: Normalize the input image based on the mean and standard deviation, specified format is not supported. MindSpore: Normalize the input image based on the mean and standard deviation, in-place option is not supported. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | mean | mean | - | | | Parameter2 | std |std | - | | | Parameter3 | inplace | - | Whether to make this operation in-place | | | Parameter4 | - | is_hwc | Whether the input image is HWC or CHW | ## Code Example ```python from download import download from PIL import Image url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/flamingos.jpg" download(url, './flamingos.jpg', replace=True) orig_img = Image.open('flamingos.jpg') # PyTorch import torchvision.transforms as T normalize = T.Normalize(mean=[0, 0, 0], std=[1, 1, 1]) to_tensor = T.ToTensor() img_torch = T.Compose([to_tensor, normalize])((orig_img)) print(img_torch.shape) # Torch tensor is in C,H,W format # Out: torch.Size([3, 292, 471]) # MindSpore import mindspore.dataset.vision as vision import mindspore.dataset.transforms as transforms normalize = vision.Normalize(mean=[0, 0, 0], std=[1, 1, 1], is_hwc=False) to_tensor = vision.ToTensor() img_ms = transforms.Compose([to_tensor, normalize])((orig_img)) print(img_ms[0].shape) # vision.ToTensor change the format from HWC to CHW, so normalize have to specify `is_hwc=False` # Out: (3, 292, 471) ```