# Differences with torchaudio.transforms.MelScale [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MelScale.md) ## torchaudio.transforms.MelScale ```python class torchaudio.transforms.MelScale(n_mels: int = 128, sample_rate: int = 16000, f_min: float = 0.0, f_max: Optional[float] = None, n_stft: Optional[int] = None, norm: Optional[str] = None) ``` For more information, see [torchaudio.transforms.MelScale](https://pytorch.org/audio/0.8.0/transforms.html#torchaudio.transforms.MelScale.html). ## mindspore.dataset.audio.MelScale ```python class mindspore.dataset.audio.MelScale(n_mels=128, sample_rate=16000, f_min=0.0, f_max=None, n_stft=201, norm=NormType.NONE, mel_type=MelType.HTK) ``` For more information, see [mindspore.dataset.audio.MelScale](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset_audio/mindspore.dataset.audio.MelScale.html#mindspore.dataset.audio.MelScale). ## Differences PyTorch: Convert normal STFT to STFT at the Mel scale. MindSpore: Convert normal STFT to STFT at the Mel scale.. Mel scale can be specified. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | n_mels | n_mels | - | | | Parameter2 | sample_rate | sample_rate | - | | | Parameter4 | f_min | f_min | - | | | Parameter5 | f_max | f_max | - | | | Parameter6 | n_stft | n_stft | - | | | Parameter10 | norm | norm | - | | | Parameter11 | - | mel_type | Mel scale to use | ## Code Example ```python import numpy as np fake_input = np.array([[1., 1.], [0., 0.], [1., 1.], [1., 1.]]).astype(np.float32) # PyTorch import torch import torchaudio.transforms as T transformer = T.MelScale(n_stft=4, n_mels=2) torch_result = transformer(torch.from_numpy(fake_input)) print(torch_result) # Out: tensor([[0.0000, 0.0000], # [0.5394, 0.5394]]) # MindSpore import mindspore.dataset.audio as audio transformer = audio.MelScale(n_stft=4, n_mels=2) ms_result = transformer(fake_input) print(ms_result) # Out: [[0. 0. ] # [0.53936154 0.53936154]] ```