# Differences with torchvision.datasets.MNIST [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/MNIST.md) ## torchvision.datasets.MNIST ```python class torchvision.datasets.MNIST( root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False) ``` For more information, see [torchvision.datasets.MNIST](https://pytorch.org/vision/0.9/datasets.html#torchvision.datasets.MNIST). ## mindspore.dataset.MnistDataset ```python class mindspore.dataset.MnistDataset( dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None) ``` For more information, see [mindspore.dataset.MnistDataset](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset/mindspore.dataset.MnistDataset.html#mindspore.dataset.MnistDataset). ## Differences PyTorch: Read the MNIST dataset. API integrates the transformation operations for image and label. MindSpore: Read the MNIST dataset. Downloading dataset from web is not supported. Transforms for image and label depends on `mindspore.dataset.map` operation. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | root | dataset_dir | - | | | Parameter2 | train | - | Usage of this dataset,supported by `usage` in MindSpore | | | Parameter3 | transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter4 | target_transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter5 | download | - | Not supported by MindSpore | | | Parameter6 | - | usage | Usage of this dataset | | | Parameter7 | - | num_samples | The number of images to be included in the dataset. | | | Parameter8 | - | num_parallel_workers | Number of worker threads to read the data | | | Parameter9 | - | shuffle | Whether to perform shuffle on the dataset | | | Parameter10 | - | sampler | Object used to choose samples from the dataset | | | Parameter11 | - | num_shards | Number of shards that the dataset will be divided into | | | Parameter12 | - | shard_id | The shard ID within num_shards | | | Parameter13 | - | cache | Use tensor caching service to speed up dataset processing | ## Code Example ```python # PyTorch import torchvision.transforms as T import torchvision.datasets as datasets from torch.utils.data import DataLoader root = "/path/to/dataset_directory/" dataset = datasets.MNIST(root, train=False, transform=T.Resize((32, 32)), download=True) dataloader = DataLoader(dataset, batch_size=32) # MindSpore import mindspore.dataset as ds import mindspore.dataset.vision as vision # Download the dataset files, unzip into the following structure # . # └── "/path/to/dataset_directory/" # ├── t10k-images-idx3-ubyte # ├── t10k-labels-idx1-ubyte # ├── train-images-idx3-ubyte # └── train-labels-idx1-ubyte root = "/path/to/dataset_directory/" ms_dataloader = ds.Cifar10Dataset(root, usage='test') ms_dataloader = ms_dataloader.map(vision.Resize((32, 32)), ["image"]) ms_dataloader = ms_dataloader.batch(32) ```