# Differences with torchaudio.datasets.LJSPEECH [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LJSPEECH.md) ## torchaudio.datasets.LJSPEECH ```python class torchaudio.datasets.LJSPEECH( root: str, url: str = 'https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2', folder_in_archive: str = 'wavs', download: bool = False) ``` For more information, see [torchaudio.datasets.LJSPEECH](https://pytorch.org/audio/0.8.0/datasets.html#ljspeech). ## mindspore.dataset.LJSpeechDataset ```python class mindspore.dataset.LJSpeechDataset( dataset_dir, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None) ``` For more information, see [mindspore.dataset.LJSpeechDataset](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset/mindspore.dataset.LJSpeechDataset.html#mindspore.dataset.LJSpeechDataset). ## Differences PyTorch: Read the LJSpeech dataset. MindSpore: Read the LJSpeech dataset. Downloading dataset from web is not supported. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | root | dataset_dir | - | | | Parameter2 | url | - |Not supported by MindSpore| | | Parameter3 | folder_in_archive | - |Not supported by MindSpore| | | Parameter4 | download | - | Not supported by MindSpore | | | Parameter5 | - | num_samples | The number of images to be included in the dataset | | | Parameter6 | - | num_parallel_workers | Number of worker threads to read the data | | | Parameter7 | - | shuffle | Whether to perform shuffle on the dataset | | | Parameter8 | - | sampler | Object used to choose samples from the dataset | | | Parameter9 | - | num_shards | Number of shards that the dataset will be divided into | | | Parameter10 | - | shard_id | The shard ID within num_shards | | | Parameter11 | - | cache | Use tensor caching service to speed up dataset processing | ## Code Example ```python # PyTorch import torchaudio.datasets as datasets from torch.utils.data import DataLoader root = "/path/to/dataset_directory/" dataset = datasets.LJSPEECH(root, url='https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2') dataloader = DataLoader(dataset) # MindSpore import mindspore.dataset as ds # Download LJSpeech dataset files, unzip into the following structure # . # └── /path/to/dataset_directory/ # ├── README # ├── metadata.csv # └── wavs # ├── LJ001-0001.wav # ├── LJ001-0002.wav # ├── LJ001-0003.wav # ├── LJ001-0004.wav # ├── LJ001-0005.wav # ├── LJ001-0006.wav # ├── LJ001-0007.wav # ├── LJ001-0008.wav # ... # ├── LJ050-0277.wav # └── LJ050-0278.wav root = "/path/to/dataset_directory/" ms_dataloader = ds.LJSpeechDataset(root) ```