# Differences with torchaudio.datasets.LIBRITTS [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/LIBRITTS.md) ## torchaudio.datasets.LIBRITTS ```python class torchaudio.datasets.LIBRITTS( root: str, url: str = 'train-clean-100', folder_in_archive: str = 'LibriTTS', download: bool = False) ``` For more information, see [torchaudio.datasets.LIBRITTS](https://pytorch.org/audio/0.8.0/datasets.html#libritts). ## mindspore.dataset.LibriTTSDataset ```python class mindspore.dataset.LibriTTSDataset( dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None) ``` For more information, see [mindspore.dataset.LibriTTSDataset](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset/mindspore.dataset.LibriTTSDataset.html#mindspore.dataset.LibriTTSDataset). ## Differences PyTorch: Read the LibriTTS dataset. MindSpore: Read the LibriTTS dataset. Downloading dataset from web is not supported. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | root | dataset_dir | - | | | Parameter2 | url | usage |- | | | Parameter3 | folder_in_archive | - |Not supported by MindSpore | | | Parameter4 | download | - | Not supported by MindSpore | | | Parameter5 | - | num_samples | The number of images to be included in the dataset | | | Parameter6 | - | num_parallel_workers | Number of worker threads to read the data | | | Parameter7 | - | shuffle | Whether to perform shuffle on the dataset | | | Parameter8 | - | sampler | Object used to choose samples from the dataset | | | Parameter9 | - | num_shards | Number of shards that the dataset will be divided into | | | Parameter10 | - | shard_id | The shard ID within num_shards | | | Parameter11 | - | cache | Use tensor caching service to speed up dataset processing | ## Code Example ```python # PyTorch import torchaudio.datasets as datasets from torch.utils.data import DataLoader root = "/path/to/dataset_directory/" dataset = datasets.LIBRITTS(root, url='train-clean-100') dataloader = DataLoader(dataset) # MindSpore import mindspore.dataset as ds # Download LibriTTS dataset files, unzip into the following structure # . # └── /path/to/dataset_directory/ # ├── dev-clean # │ ├── 116 # │ │ ├── 288045 # | | | ├── 116_288045.trans.tsv # │ │ │ ├── 116_288045_000003_000000.wav # │ │ │ └──... # │ │ ├── 288046 # | | | ├── 116_288046.trans.tsv # | | | ├── 116_288046_000003_000000.wav # │ | | └── ... # | | └── ... # │ ├── 1255 # │ │ ├── 138279 # | | | ├── 1255_138279.trans.tsv # │ │ │ ├── 1255_138279_000001_000000.wav # │ │ │ └── ... # │ │ ├── 74899 # | | | ├── 1255_74899.trans.tsv # | | | ├── 1255_74899_000001_000000.wav # │ | | └── ... # | | └── ... # | └── ... # └── ... root = "/path/to/dataset_directory/" ms_dataloader = ds.LibriTTSDataset(root, usage='train-clean-100') ```