# Differences with torchaudio.transforms.InverseMelScale [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/InverseMelScale.md) ## torchaudio.transforms.InverseMelScale ```python class torchaudio.transforms.InverseMelScale(n_stft: int, n_mels: int = 128, sample_rate: int = 16000, f_min: float = 0.0, f_max: Optional[float] = None, max_iter: int = 100000, tolerance_loss: float = 1e-05, tolerance_change: float = 1e-08, sgdargs: Optional[dict] = None, norm: Optional[str] = None) ``` For more information, see [torchaudio.transforms.InverseMelScale](https://pytorch.org/audio/0.8.0/transforms.html#torchaudio.transforms.InverseMelScale.html). ## mindspore.dataset.audio.InverseMelScale ```python class mindspore.dataset.audio.InverseMelScale(n_stft, n_mels=128, sample_rate=16000, f_min=0.0, f_max=None, max_iter=100000, tolerance_loss=1e-5, tolerance_change=1e-8, sgdargs=None, norm=NormType.NONE, mel_type=MelType.HTK) ``` For more information, see [mindspore.dataset.audio.InverseMelScale](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset_audio/mindspore.dataset.audio.InverseMelScale.html#mindspore.dataset.audio.InverseMelScale). ## Differences PyTorch: Solve for a normal STFT from a mel frequency STFT, using a conversion matrix. MindSpore: Solve for a normal STFT from a mel frequency STFT, using a conversion matrix. Mel scale can be specified. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | n_stft | n_stft | - | | | Parameter2 | n_mels | n_mels | - | | | Parameter3 | sample_rate | sample_rate | - | | | Parameter4 | f_min | f_min | - | | | Parameter5 | f_max | f_max | - | | | Parameter6 | max_iter | max_iter | - | | | Parameter7 | tolerance_loss | tolerance_loss | - | | | Parameter8 | tolerance_change | tolerance_change | - | | | Parameter9 | sgdargs | sgdargs | - | | | Parameter10 | norm | norm | - | | | Parameter11 | - | mel_type | Mel scale to use | ## Code Example ```python import numpy as np fake_input = np.array([[1., 1.], [0., 0.], [1., 1.], [1., 1.]]).astype(np.float32) # PyTorch import torch import torchaudio.transforms as T torch.manual_seed(1) transformer = T.InverseMelScale(n_stft=2, n_mels=4) torch_result = transformer(torch.from_numpy(fake_input)) print(torch_result) # Out: tensor([[0.7576, 0.4031], # [0.2793, 0.7347]]) # MindSpore import mindspore as ms import mindspore.dataset.audio as audio ms.dataset.config.set_seed(3) transformer = audio.InverseMelScale(n_stft=2, n_mels=4) ms_result = transformer(fake_input) print(ms_result) # Out: [[[0.5507979 0.07072488] # [0.7081478 0.8399491 ]]] ```