# Differences with torchaudio.transforms.FrequencyMasking [](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/FrequencyMasking.md) ## torchaudio.transforms.FrequencyMasking ```python class torchaudio.transforms.FrequencyMasking(freq_mask_param: int, iid_masks: bool = False) ``` For more information, see [torchaudio.transforms.FrequencyMasking](https://pytorch.org/audio/0.8.0/transforms.html#torchaudio.transforms.FrequencyMasking.html). ## mindspore.dataset.audio.FrequencyMasking ```python class mindspore.dataset.audio.FrequencyMasking(iid_masks=False, freq_mask_param=0, mask_start=0, mask_value=0.0) ``` For more information, see [mindspore.dataset.audio.FrequencyMasking](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset_audio/mindspore.dataset.audio.FrequencyMasking.html#mindspore.dataset.audio.FrequencyMasking). ## Differences PyTorch: Apply masking to a spectrogram in the frequency domain. MindSpore: Apply masking to a spectrogram in the frequency domain. Variable `mask_value` is not supported. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | freq_mask_param | freq_mask_param | - | | | Parameter2 | iid_masks | iid_masks | - | | | Parameter3 | - | mask_start | Starting point to apply mask | | | Parameter4 | - | mask_value | Value to assign to the masked location, can not be changed during computing in MindSpore | ## Code Example ```python import numpy as np fake_specgram = np.array([[[0.17274511, 0.85174704, 0.07162686, -0.45436913], [-1.0271876, 0.33526883, 1.7413973, 0.12313101]]]).astype(np.float32) # PyTorch import torch import torchaudio.transforms as T torch.manual_seed(1) transformer = T.FrequencyMasking(freq_mask_param=2, iid_masks=True) torch_result = transformer(torch.from_numpy(fake_specgram), mask_value=0.0) print(torch_result) # Out: tensor([[[ 0.0000, 0.0000, 0.0000, 0.0000], # [-1.0272, 0.3353, 1.7414, 0.1231]]]) # MindSpore import mindspore as ms import mindspore.dataset.audio as audio ms.dataset.config.set_seed(2) transformer = audio.FrequencyMasking(freq_mask_param=2, iid_masks=True, mask_start=0, mask_value=0.0) ms_result = transformer(fake_specgram) print(ms_result) # Out: [[[ 0. 0. 0. 0. ] # [-1.0271876 0.33526883 1.7413973 0.12313101]]] ```