# Comparing the function difference with torch.optim.lr_scheduler.ExponentialLR [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/ExponentialDecayLR.md) ## torch.optim.lr_scheduler.ExponentialLR ```python torch.optim.lr_scheduler.ExponentialLR( optimizer, gamma, last_epoch=-1, verbose=False ) ``` For more information, see [torch.optim.lr_scheduler.ExponentialLR](https://pytorch.org/docs/1.8.1/optim.html#torch.optim.lr_scheduler.ExponentialLR). ## mindspore.nn.exponential_decay_lr ```python mindspore.nn.exponential_decay_lr( learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False ) ``` For more information, see [mindspore.nn.exponential_decay_lr](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/nn/mindspore.nn.exponential_decay_lr.html#mindspore.nn.exponential_decay_lr). ## mindspore.nn.ExponentialDecayLR ```python mindspore.nn.ExponentialDecayLR( learning_rate, decay_rate, decay_steps, is_stair=False ) ``` For more information, see [mindspore.nn.ExponentialDecayLR](https://www.mindspore.cn/docs/en/r2.3.0rc1/api_python/nn/mindspore.nn.ExponentialDecayLR.html#mindspore.nn.ExponentialDecayLR). ## Differences PyTorch (torch.optim.lr_scheduler.ExponentialLR): The calculating method is $lr * gamma^{epoch}$ . When used, the optimizer is used as input and the learning rate is updated by calling the `step` method. When `verbose` is True, the relevant information is printed for each update. MindSpore (mindspore.nn.exponential_decay_lr): The calculating method is $lr * decay\_rate^{p}$ . `exponential_decay_lr` pre-generates the learning rate list and passes the list into the optimizer. | Categories | Subcategories | PyTorch | MindSpore | Differences | | ---- | ----- | ------- | --------- | -------------------- | | Parameter | Parameter 1 | optimizer | | Optimizer for PyTorch applications. MindSpore does not have this Parameter | | | Parameter 2 | gamma | decay_rate | Parameter of decay learning rate, same function, different Parameter name | | | Parameter 3 | last_epoch | | MindSpore does not have this Parameter | | | Parameter 4 | verbose | | PyTorch `verbose` prints information about each update when it is True. MindSpore does not have this Parameter. | | | Parameter 5 | | learning_rate | MindSpore sets the initial value of the learning rate. | | | Parameter 6 | | total_step | Total number of steps in MindSpore | | | Parameter 7 | | step_per_epoch | The number of steps per epoch in MindSpore | | | Parameter 8 | - | decay_steps | The number of decay steps performed by MindSpore | | | Parameter 9 | - | is_stair | When MindSpore `is_stair` is True, the learning rate decays once every `decay_steps`. | MindSpore (mindspore.nn.ExponentialDecayLR): The calculating method is $lr * decay\_rate^{p}$ . `ExponentialDecayLR` is passed in the optimizer for training in the way of the computational graph. | Categories | Subcategories | PyTorch | MindSpore | Differences | | ---- | ----- | ------- | --------- | -------------------- | | Parameter | Parameter 1 | optimizer | - | Optimizer for PyTorch applications. MindSpore does not have this Parameter | | | Parameter 2 | gamma | decay_rate | Parameter of decay learning rate, same function, different Parameter name | | | Parameter 3 | last_epoch | - | MindSpore does not have this Parameter. | | | Parameter 4 | verbose | - | PyTorch `verbose` prints information about each update when it is True. MindSpore does not have this Parameter. | | | Parameter 5 | | learning_rate | MindSpore sets the initial value of the learning rate. | | | Parameter 6 | - | decay_steps | The number of decay steps performed by MindSpore | | | Parameter 7 | - | is_stair | When MindSpore `is_stair` is True, the learning rate decays once every `decay_steps`. | ## Code Example ```python # In MindSpore: import mindspore as ms from mindspore import nn # In MindSpore:exponential_decay_lr learning_rate = 0.1 decay_rate = 0.9 total_step = 6 step_per_epoch = 2 decay_epoch = 1 output = nn.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch) print(output) # Out # [0.1, 0.1, 0.09000000000000001, 0.09000000000000001, 0.08100000000000002, 0.08100000000000002] # In MindSpore:ExponentialDecayLR learning_rate = 0.1 decay_rate = 0.9 decay_steps = 4 global_step = ms.Tensor(2, ms.int32) exponential_decay_lr = nn.ExponentialDecayLR(learning_rate, decay_rate, decay_steps) result = exponential_decay_lr(global_step) print(result) # Out # 0.094868325 # In torch: import torch import numpy as np from torch import optim model = torch.nn.Sequential(torch.nn.Linear(20, 1)) optimizer = optim.SGD(model.parameters(), 0.1) exponential_decay_lr = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) myloss = torch.nn.MSELoss() dataset = [(torch.tensor(np.random.rand(1, 20).astype(np.float32)), torch.tensor([1.]))] for epoch in range(5): for input, target in dataset: optimizer.zero_grad() output = model(input) loss = myloss(output.view(-1), target) loss.backward() optimizer.step() exponential_decay_lr.step() print(exponential_decay_lr.get_last_lr()) # Out # [0.09000000000000001] # [0.08100000000000002] # [0.07290000000000002] # [0.06561000000000002] # [0.05904900000000002] ```