# Differences with torchvision.datasets.CelebA [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/CelebA.md) ## torchvision.datasets.CelebA ```python class torchvision.datasets.CelebA( root: str, split: str = 'train', target_type: Union[List[str], str] = 'attr', transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False) ``` For more information, see [torchvision.datasets.CelebA](https://pytorch.org/vision/0.9/datasets.html#torchvision.datasets.CelebA). ## mindspore.dataset.CelebADataset ```python class mindspore.dataset.CelebADataset( dataset_dir, num_parallel_workers=None, shuffle=None, usage='all', sampler=None, decode=False, extensions=None, num_samples=None, num_shards=None, shard_id=None, cache=None, decrypt=None) ``` For more information, see [mindspore.dataset.CelebADataset](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/dataset/mindspore.dataset.CelebADataset.html#mindspore.dataset.CelebADataset). ## Differences PyTorch: Read the CelebA (CelebFaces Attributes) dataset. API integrates the transformation operations for image and label. MindSpore: Read the CelebA (CelebFaces Attributes) dataset. Downloading dataset from web is not supported. Transforms for image and label depends on `mindshare.dataset.map` operation. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | |Parameter | Parameter1 | root | dataset_dir | - | | | Parameter2 | split | usage |- | | | Parameter3 | target_type | - | - | | | Parameter4 | transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter5 | target_transform | - | Supported by `mindspore.dataset.map` operation | | | Parameter6 | download | - | Not supported by MindSpore | | | Parameter7 | - | num_parallel_workers | Number of worker threads to read the data | | | Parameter8 | - | shuffle | Whether to perform shuffle on the dataset | | | Parameter9 | - | sampler | Object used to choose samples from the dataset | | | Parameter10 | - | decode | Whether to decode the images after reading | | | Parameter11 | - | extensions | List of file extensions to be included in the dataset | | | Parameter12 | - | num_samples | The number of images to be included in the dataset | | | Parameter13 | - | num_shards | Number of shards that the dataset will be divided into | | | Parameter14 | - | shard_id | The shard ID within num_shards | | | Parameter15 | - | cache | Use tensor caching service to speed up dataset processing | | | Parameter16 | - | decrypt | Image decryption function | ## Code Example ```python # PyTorch import torchvision.transforms as T import torchvision.datasets as datasets from torch.utils.data import DataLoader root = "/path/to/dataset_directory/" dataset = datasets.CelebA(root, split='train', target_type="attr", transform=T.ToTensor(), download=True) dataloader = DataLoader(dataset) # MindSpore import mindspore.dataset as ds import mindspore.dataset.vision as vision # Download CelebA dataset files, unzip the img_align_celeba.zip and put list_attr_celeba.txt together like # . # └── /path/to/dataset_directory/ # ├── list_attr_celeba.txt # ├── 000001.jpg # ├── 000002.jpg # ├── 000003.jpg # ├── ... root = "/path/to/dataset_directory/" ms_dataloader = ds.CelebADataset(root, usage='train', decode=True) ms_dataloader = ms_dataloader.map(vision.ToTensor(), ["image"]) ```