# Differences with torch.optim.Adagrad [![View Source On Gitee](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.3.q1/resource/_static/logo_source_en.svg)](https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/source_en/note/api_mapping/pytorch_diff/Adagrad.md) ## torch.optim.Adagrad ```python class torch.optim.Adagrad( params, lr=0.01, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10 ) ``` For more information, see [torch.optim.Adagrad](https://pytorch.org/docs/1.8.1/optim.html#torch.optim.Adagrad). ## mindspore.nn.Adagrad ```python class mindspore.nn.Adagrad( params, accum=0.1, learning_rate=0.001, update_slots=True, loss_scale=1.0, weight_decay=0.0 ) ``` For more information, see [mindspore.nn.Adagrad](https://mindspore.cn/docs/en/r2.3.0rc1/api_python/nn/mindspore.nn.Adagrad.html#mindspore.nn.Adagrad). ## Differences PyTorch and MindSpore implement different algorithms for this optimizer. PyTorch decays the learning rate in each round of iteration and adds `eps` to the division calculation to maintain computational stability, while MindSpore does not have this process. | Categories | Subcategories |PyTorch | MindSpore | Difference | | --- | --- | --- | --- |--- | | Parameters | Parameter 1 | params | params | Consistent function | | | Parameter 2 | lr | learning_rate | Same function, different parameter names and default values | | | Parameter 3 | lr_decay | - | PyTorch's `lr_decay` indicates the decay value of the learning rate, and MindSpore does not have this parameter | | | Parameter 4 | weight_decay | weight_decay | Consistent function | | | Parameter 5 | initial_accumulator_value | accum | Same function, different parameter names and default values | | | Parameter 6 | eps | - | PyTorch `eps` is used to add to the denominator of a division to increase computational stability, and MindSpore does not have this parameter | | | Parameter 7 | - | update_slots | MindSpore `update_slots` indicates whether to update the accumulator, and PyTorch does not have this parameter | | | Parameter 8 | - | loss_scale | MindSpore `loss_scale` is the gradient scaling factor, and PyTorch does not have this parameter | ### Code Example ```python # MindSpore import mindspore from mindspore import nn net = nn.Dense(2, 3) optimizer = nn.Adagrad(net.trainable_params()) criterion = nn.MAELoss(reduction="mean") def forward_fn(data, label): logits = net(data) loss = criterion(logits, label) return loss, logits grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True) def train_step(data, label): (loss, _), grads = grad_fn(data, label) optimizer(grads) return loss # PyTorch import torch model = torch.nn.Linear(2, 3) criterion = torch.nn.L1Loss(reduction='mean') optimizer = torch.optim.Adagrad(model.parameters()) def train_step(data, label): optimizer.zero_grad() output = model(data) loss = criterion(output, label) loss.backward() optimizer.step() ```