Source code for mindspore.ops.deprecated

# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""Defines deprecated operators."""
import itertools
import numpy as np
from mindspore.common._decorator import deprecated
from mindspore import context
from mindspore import _checkparam as validator
from mindspore.ops import signature as sig
from mindspore.ops.primitive import Primitive, prim_attr_register
from mindspore.ops.operations.math_ops import _MathBinaryOp
from mindspore.ops.operations.nn_ops import _check_positive_int_or_tuple


class BNTrainingReduce(Primitive):
    """
    Please use BatchNorm instead.
    """
    @deprecated("1.5", "ops.BatchNorm", False)
    @prim_attr_register
    def __init__(self, data_format="NCHW"):
        """Initialize BNTrainingReduce."""
        super().__init__(name="BNTrainingReduce")
        self.init_prim_io_names(inputs=['x'], outputs=['sum', 'square_sum'])
        self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
        if context.get_context("device_target") != "GPU" and self.format == "NHWC":
            raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, "
                             f"but got the 'data_format' is {self.format} and "
                             f"the platform is {context.get_context('device_target')}.")
        self.add_prim_attr('data_format', self.format)


class BNTrainingUpdate(Primitive):
    """
    Please use BatchNorm instead.
    """
    @deprecated("1.5", "ops.BatchNorm", False)
    @prim_attr_register
    def __init__(self, isRef=True, epsilon=1e-5, factor=0.1, data_format="NCHW"):
        """Initialize BNTrainingUpdate."""
        super().__init__(name="BNTrainingUpdate")
        self.init_prim_io_names(inputs=['x', 'sum', 'square_sum', 'scale', 'b', 'mean', 'variance'],
                                outputs=['y', 'running_mean', 'running_variance', 'save_mean', 'save_inv_variance'])
        validator.check_value_type("isRef", isRef, [bool], self.name)
        validator.check_value_type("epsilon", epsilon, [float], self.name)
        validator.check_value_type("factor", factor, [float], self.name)
        self.epsilon = validator.check_float_range(epsilon, 0, 1, validator.INC_RIGHT, 'epsilon', 'BNTrainingUpdate')
        self.factor = validator.check_float_range(factor, 0, 1, validator.INC_BOTH, 'factor', 'BNTrainingUpdate')
        self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
        if context.get_context("device_target") != "GPU" and self.format == "NHWC":
            raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, "
                             f"but got the 'data_format' is {self.format} and "
                             f"the platform is {context.get_context('device_target')}.")
        self.add_prim_attr('data_format', self.format)


[docs]class MaxPoolWithArgmax(Primitive): """ Please use :class:`mindspore.ops.MaxPoolWithArgmaxV2` instead. Supported Platforms: Deprecated """ @deprecated("2.0", "ops.MaxPoolWithArgmaxV2", False) @prim_attr_register def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"): """Initialize MaxPoolWithArgmax.""" super().__init__(name="MaxPoolWithArgmax") self.init_prim_io_names(inputs=['x'], outputs=['output', 'mask']) validator.check_value_type('kernel_size', kernel_size, [int, tuple], self.name) validator.check_value_type('strides', strides, [int, tuple], self.name) validator.check_value_type('pad_mode', pad_mode, [str], self.name) self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME'], 'pad_mode', self.name) self.add_prim_attr("pad_mode", self.pad_mode) self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name) if context.get_context("device_target") != "GPU" and self.format == "NHWC": raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, " f"but got the 'data_format' is {self.format} and " f"the platform is {context.get_context('device_target')}.") self.kernel_size = _check_positive_int_or_tuple( "kernel_size", kernel_size, self.name, allow_four=False, ret_four=True) self.kernel_size = (1, self.kernel_size[-2], self.kernel_size[-1], 1) self.add_prim_attr("kernel_size", self.kernel_size) self.strides = _check_positive_int_or_tuple("strides", strides, self.name, allow_four=False, ret_four=True) self.strides = (1, self.strides[-2], self.strides[-1], 1) self.add_prim_attr("strides", self.strides)
class DropoutGenMask(Primitive): """ Please use Dropout instead. """ @deprecated("1.5", "ops.Dropout", False) @prim_attr_register def __init__(self, Seed0=0, Seed1=0): """Initialize DropoutGenMask.""" self.init_prim_io_names(inputs=['shape', 'keep_prob'], outputs=['output']) validator.check_value_type("Seed0", Seed0, [int], self.name) validator.check_value_type("Seed1", Seed1, [int], self.name) self.add_prim_attr("side_effect_hidden", True) class DropoutDoMask(Primitive): """ Please use Dropout instead. """ @deprecated("1.5", "ops.Dropout", False) @prim_attr_register def __init__(self): super().__init__(name="DropoutDoMask") class Gelu(Primitive): """ Please use GeLU instead. """ @deprecated("1.1", "GeLU", True) @prim_attr_register def __init__(self): """Initialize Gelu""" super().__init__(name="Gelu") self.init_prim_io_names(inputs=['x'], outputs=['output']) class FastGelu(Primitive): """ Please use FastGeLU instead. """ @deprecated("1.1", "FastGeLU", True) @prim_attr_register def __init__(self): """Initialize FastGelu.""" super().__init__(name="FastGelu") self.init_prim_io_names(inputs=['x'], outputs=['output']) class TensorAdd(_MathBinaryOp): """ Please use Add instead. """ @deprecated("1.1", "Add", True) @prim_attr_register def __init__(self): """Initialize TensorAdd.""" _MathBinaryOp.__init__(self)
[docs]class InplaceUpdate(Primitive): """ Please use :class:`mindspore.ops.InplaceUpdateV2` instead. Supported Platforms: Deprecated """ @deprecated("2.0", "ops.InplaceUpdateV2", False) @prim_attr_register def __init__(self, indices): """Initialize InplaceUpdate""" self.init_prim_io_names(inputs=['x', 'v'], outputs=['y']) self.indices = indices validator.check_value_type("indices", indices, [int, tuple], self.name) if isinstance(indices, int): self.indices = (indices,) for item in self.indices: validator.check_value_type("item of indices", item, [int], self.name)
class DynamicShape(Primitive): """ Please use TensorShape instead. """ @deprecated("1.7", "TensorShape", True) @prim_attr_register def __init__(self, dtype=9): """init Shape""" super().__init__(name="DynamicShape") self.init_prim_io_names(inputs=['tensor'], outputs=['output']) self.add_prim_attr('is_dynamic_shape', True) class GatherV2(Primitive): """ Please use Gather instead. """ @deprecated("1.1", "Gather", True) @prim_attr_register def __init__(self): """Initialize GatherV2""" super().__init__(name="GatherV2") self.add_prim_attr("batch_dims", 0) self.init_prim_io_names(inputs=['params', 'indices', 'axis'], outputs=['output']) class ScalarToArray(Primitive): """ Please use scalar_to_tensor instead. """ @deprecated("2.0", "ops.scalar_to_tensor", False) @prim_attr_register def __init__(self): super().__init__(name="ScalarToArray") class Pack(Primitive): """ Please use Stack instead. """ @deprecated("1.1", "Stack", True) @prim_attr_register def __init__(self, axis=0): """Initialize Pack""" super().__init__(name="Pack") validator.check_value_type("axis", axis, [int], self.name) self.axis = axis class Unpack(Primitive): """ Please use Unstack instead. """ @deprecated("1.1", "Unstack", True) @prim_attr_register def __init__(self, axis=0): """Initialize Unpack""" super().__init__(name="Unpack") validator.check_value_type("axis", axis, [int], self.name) self.axis = axis
[docs]class ScatterNonAliasingAdd(Primitive): """ Please use TensorScatterAdd instead. Supported Platforms: Deprecated """ __mindspore_signature__ = ( sig.make_sig('input_x', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T), sig.make_sig('indices', dtype=sig.sig_dtype.T1), sig.make_sig('updates', dtype=sig.sig_dtype.T) ) @deprecated("2.1", "ops.ScatterNonAliasingAdd", False) @prim_attr_register def __init__(self): """Initialize ScatterNonAliasingAdd""" super().__init__(name="ScatterNonAliasingAdd") self.init_prim_io_names(inputs=['input_x', 'indices', 'updates'], outputs=['y']) self.add_prim_attr('side_effect_mem', True)
[docs]class BatchToSpaceND(Primitive): """ Please use batch_to_space_nd instead. Supported Platforms: Deprecated """ @deprecated("2.0", "ops.batch_to_space_nd", False) @prim_attr_register def __init__(self, block_shape, crops): """Initialize BatchToSpaceND""" super().__init__(name="BatchToSpaceND") if isinstance(block_shape, int): block_shape = (block_shape,) * np.array(crops).shape[0] self.add_prim_attr("block_shape", block_shape) validator.check_value_type('block_shape type', block_shape, [list, tuple], self.name) validator.check('block_shape shape', len(np.array(block_shape).shape), '', 1, validator.EQ, self.name) block_rank = len(block_shape) if context.get_context("device_target") == "Ascend": validator.check('block_shape length', block_rank, '', 2, validator.EQ, self.name) for elem in block_shape: validator.check('block_shape element', elem, '', 1, validator.GE, self.name) validator.check_value_type('block_shape element', elem, [int], self.name) self.block_shape = block_shape validator.check_value_type('crops type', crops, [list, tuple], self.name) validator.check('crops length', len(crops), '', 1, validator.GE, self.name) validator.check('crops shape', np.array(crops).shape, '', (block_rank, 2), validator.EQ, self.name) for elem in itertools.chain(*crops): validator.check_non_negative_int(elem, 'crops element', self.name) validator.check_value_type('crops element', elem, [int], self.name) self.crops = crops
class identity(Primitive): """ Please use side_effect_propagate instead. """ # Side effect will propagated from the first argument to return value. side_effect_propagate = 1 @prim_attr_register def __init__(self): """Initialize identity.""" super().__init__(name="identity") self.add_prim_attr('side_effect_propagate', 1) @deprecated('2.0', 'nn.Identity', False) def __call__(self, x): return x