Differences with torch.std

View Source On Gitee

The following mapping relationships can be found in this file.

PyTorch APIs

MindSpore APIs

torch.std

mindspore.ops.std

torch.Tensor.std

mindspore.Tensor.std

torch.std

torch.std(input, dim, unbiased=True, keepdim=False, *, out=None)

For more information, see torch.std.

mindspore.ops.std

mindspore.ops.std(input, axis=None, ddof=0, keepdims=False)

For more information, see mindspore.ops.std.

Differences

PyTorch: Output the standard deviation of the Tensor in each dimension, or the standard deviation of the specified dimension according to dim. If unbiased is True, use Bessel for correction; if False, use bias estimation to calculate the standard deviation. keepdim controls whether the output and input dimensions are the same.

MindSpore: Output the standard deviation of the Tensor in each dimension, or the standard deviation of the specified dimension according to axis. If ddof is a boolean, it has the same effect as unbiased; if ddof is an integer, the divisor used in the calculation is N-ddof, where N denotes the number of elements. keepdim controls whether the output and the input have the same dimensionality.

Categories

Subcategories

PyTorch

MindSpore

Differences

Parameters

Parameter 1

input

input

Same function, different parameter names

Parameter 2

dim

axis

Same function, different parameter names

Parameter 3

unbiased

ddof

ddof is the same as unbiased when it is a boolean value

Parameter 4

keepdim

keepdims

Same function, different parameter names

Parameter 5

out

-

MindSpore does not have this parameter

Code Example

# PyTorch
import torch

input = torch.tensor([[[9, 7, 4, -10],
                       [-9, -2, 1, -2]]], dtype=torch.float32)
print(torch.std(input, dim=2, unbiased=True, keepdim=True))
# tensor([[[8.5829],
#          [4.2426]]])

# MindSpore
import mindspore as ms

input = ms.Tensor([[[9, 7, 4, -10],
                    [-9, -2, 1, -2]]], ms.float32)
print(ms.ops.std(input, axis=2, ddof=True, keepdims=True))
# [[[8.582929 ]
#   [4.2426405]]]