Differences with torchaudio.transforms.TimeMasking
torchaudio.transforms.TimeMasking
class torchaudio.transforms.TimeMasking(time_mask_param: int, iid_masks: bool = False)
For more information, see torchaudio.transforms.TimeMasking.
mindspore.dataset.audio.TimeMasking
class mindspore.dataset.audio.TimeMasking(iid_masks=False, time_mask_param=0, mask_start=0, mask_value=0.0)
For more information, see mindspore.dataset.audio.TimeMasking.
Differences
PyTorch: Apply masking to a spectrogram in the time domain.
MindSpore: Apply masking to a spectrogram in the time domain. Variable mask_value
is not supported.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameter |
Parameter1 |
time_mask_param |
time_mask_param |
- |
Parameter2 |
iid_masks |
iid_masks |
- |
|
Parameter3 |
- |
mask_start |
Starting point to apply mask |
|
Parameter4 |
- |
mask_value |
Value to assign to the masked location, can not be changed during computing in MindSpore |
Code Example
import numpy as np
fake_wav = np.array([[[0.17274511, 0.85174704, 0.07162686, -0.45436913],
[-1.0271876, 0.33526883, 1.7413973, 0.12313101]]]).astype(np.float32)
# PyTorch
import torch
import torchaudio.transforms as T
torch.manual_seed(1)
transformer = T.TimeMasking(time_mask_param=2, iid_masks=True)
torch_result = transformer(torch.from_numpy(fake_wav), mask_value=0.0)
print(torch_result)
# Out: tensor([[[ 0.0000, 0.8517, 0.0716, -0.4544],
# [ 0.0000, 0.3353, 1.7414, 0.1231]]])
# MindSpore
import mindspore as ms
import mindspore.dataset.audio as audio
ms.dataset.config.set_seed(2)
transformer = audio.TimeMasking(time_mask_param=2, iid_masks=True, mask_start=0, mask_value=0.0)
ms_result = transformer(fake_wav)
print(ms_result)
# Out: [[[ 0. 0.85174704 0.07162686 -0.45436913]
# [ 0. 0.33526883 1.7413973 0.12313101]]]