Differences with torchvision.transforms.Normalize
torchvision.transforms.Normalize
class torchvision.transforms.Normalize(mean, std, inplace=False)
For more information, see torchvision.transforms.Normalize.
mindspore.dataset.vision.Normalize
class mindspore.dataset.vision.Normalize(mean, std, is_hwc=True)
For more information, see mindspore.dataset.vision.Normalize.
Differences
PyTorch: Normalize the input image based on the mean and standard deviation, specified format is not supported.
MindSpore: Normalize the input image based on the mean and standard deviation, in-place option is not supported.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameter |
Parameter1 |
mean |
mean |
- |
Parameter2 |
std |
std |
- |
|
Parameter3 |
inplace |
- |
Whether to make this operation in-place |
|
Parameter4 |
- |
is_hwc |
Whether the input image is HWC or CHW |
Code Example
from download import download
from PIL import Image
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/flamingos.jpg"
download(url, './flamingos.jpg', replace=True)
orig_img = Image.open('flamingos.jpg')
# PyTorch
import torchvision.transforms as T
normalize = T.Normalize(mean=[0, 0, 0], std=[1, 1, 1])
to_tensor = T.ToTensor()
img_torch = T.Compose([to_tensor, normalize])((orig_img))
print(img_torch.shape)
# Torch tensor is in C,H,W format
# Out: torch.Size([3, 292, 471])
# MindSpore
import mindspore.dataset.vision as vision
import mindspore.dataset.transforms as transforms
normalize = vision.Normalize(mean=[0, 0, 0], std=[1, 1, 1], is_hwc=False)
to_tensor = vision.ToTensor()
img_ms = transforms.Compose([to_tensor, normalize])((orig_img))
print(img_ms[0].shape)
# vision.ToTensor change the format from HWC to CHW, so normalize have to specify `is_hwc=False`
# Out: (3, 292, 471)