Differences with torch.nn.GRUCell
torch.nn.GRUCell
class torch.nn.GRUCell(
input_size,
hidden_size,
bias=True)(input, hidden) -> Tensor
For more information, see torch.nn.GRUCell.
mindspore.nn.GRUCell
class mindspore.nn.GRUCell(
input_size: int,
hidden_size: int,
has_bias: bool=True)(x, hx) -> Tensor
For more information, see mindspore.nn.GRUCell.
Differences
PyTorch: Recurrent Neural Network unit.
MindSpore: MindSpore API implements the same functions as PyTorch.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameters |
Parameter 1 |
input_size |
input_size |
- |
Parameter 2 |
hidden_size |
hidden_size |
- |
|
Parameter 3 |
bias |
has_bias |
Same function, different parameter names |
|
Inputs |
Input 1 |
input |
x |
Same function, different parameter names |
Input 2 |
hidden |
hx |
Same function, different parameter names |
Code Example 1
# PyTorch
import torch
from torch import tensor
import numpy as np
grucell = torch.nn.GRUCell(2, 3, bias=False)
input = torch.tensor(np.array([[3.0, 4.0]]).astype(np.float32))
hidden = torch.tensor(np.array([[1.0, 2.0, 3]]).astype(np.float32))
output = grucell(input, hidden)
print(output)
# tensor([[ 0.9948, 0.0913, -0.1633]], grad_fn=<AddBackward0>)
# MindSpore
import mindspore.nn as nn
from mindspore import Tensor
import numpy as np
grucell = nn.GRUCell(2, 3, has_bias=False)
x = Tensor(np.array([[3.0, 4.0]]).astype(np.float32))
hx = Tensor(np.array([[1.0, 2.0, 3]]).astype(np.float32))
output = grucell(x, hx)
print(output)
# [[-0.94861907 0.6191679 2.1289415 ]]