Differences with torch.nn.GELU
torch.nn.GELU
class torch.nn.GELU()(input) -> Tensor
For more information, see torch.nn.GELU.
mindspore.nn.GELU
class mindspore.nn.GELU(approximate=True)(x) -> Tensor
For more information, see mindspore.nn.GELU.
Differences
PyTorch: This function represents the Gaussian error linear unit function \(GELU(X)=X\times \Phi(x)\), where \(\Phi(x)\) is the cumulative distribution function of the Gaussian distribution. The input x denotes an arbitrary number of dimensions.
MindSpore: MindSpore API implements basically the same function as PyTorch.
Categories |
Subcategories |
PyTorch |
MindSpore |
Difference |
---|---|---|---|---|
Parameter |
Parameter 1 |
- |
approximate |
Determines whether approximation is enabled or not, and the default value is True. After testing, the output is more similar to Pytorch when approximate is False |
Input |
Single input |
input |
x |
Same function, different parameter names |
Code Example 1
The two APIs achieve the same function and have the same usage.
# PyTorch
import torch
input_x = torch.Tensor([[2, 4], [1, 2]])
output = torch.nn.GELU()(input_x)
print(output.detach().numpy())
# [[1.9544997 3.9998734]
# [0.8413447 1.9544997]]
# MindSpore
import mindspore
import numpy as np
x = mindspore.Tensor(np.array([[2, 4], [1, 2]]), mindspore.float32)
output = mindspore.nn.GELU(approximate=False)(x)
print(output)
# [[1.9544997 3.9998732]
# [0.8413447 1.9544997]]