mindspore.ops.soft_margin_loss
- mindspore.ops.soft_margin_loss(input, target, reduction='mean')[source]
Calculate the soft margin loss of input and target.
Creates a criterion that optimizes a two-class classification logistic loss between input tensor \(x\) and target tensor \(y\) (containing 1 or -1).
\[\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}\]where \(x.nelement()\) is the number of elements of \(x\).
Warning
This is an experimental API that is subject to change or deletion.
- Parameters
input (Tensor) – Predict data. Data type must be float16 or float32.
target (Tensor) – Ground truth data, with the same type and shape as input.
reduction (str, optional) –
Apply specific reduction method to the output:
'none'
,'mean'
,'sum'
. Default:'mean'
.'none'
: no reduction will be applied.'mean'
: compute and return the mean of elements in the output.'sum'
: the output elements will be summed.
- Outputs:
Tensor or Scalar. If reduction is
'none'
, its shape is the same as input. Otherwise, a scalar value will be returned.
- Raises
TypeError – If input or target is not a Tensor.
TypeError – If dtype of input or target is neither float16 nor float32.
ValueError – If shape of input is not the same as that of target.
ValueError – If reduction is not one of
'none'
,'mean'
or'sum'
.
- Supported Platforms:
Ascend
GPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> logits = Tensor(np.array([[0.3, 0.7], [0.5, 0.5]]), mindspore.float32) >>> labels = Tensor(np.array([[-1, 1], [1, -1]]), mindspore.float32) >>> output = ops.soft_margin_loss(logits, labels) >>> print(output) 0.6764238