mindspore.ops.scatter_nd_sub
- mindspore.ops.scatter_nd_sub(input_x, indices, updates, use_locking=False)[source]
Applies sparse subtraction to individual values or slices in a tensor.
Using given values to update tensor value through the subtraction operation, along with the input indices. This operation outputs the input_x after the update is done, which makes it convenient to use the updated value.
input_x has rank P and indices has rank Q where Q >= 2.
indices has shape \((i_0, i_1, ..., i_{Q-2}, N)\) where N <= P.
The last dimension of indices (with length N ) indicates slices along the N th dimension of input_x.
updates is a tensor of rank Q-1+P-N. Its shape is: \((i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})\).
- Parameters
input_x (Parameter) – The target tensor, with data type of Parameter.
indices (Tensor) – The index of input tensor, with int32 or int64 data type. The rank of indices must be at least 2 and indices.shape[-1] <= len(shape).
updates (Tensor) – The tensor doing the subtraction operation with input_x, has the same type as input. The shape is indices.shape[:-1] + x.shape[indices.shape[-1]:].
use_locking (bool) – Whether to protect the assignment by a lock. Default:
False
.
- Returns
Tensor, has the same shape and type as input_x.
- Raises
TypeError – If the dtype of use_locking is not bool.
TypeError – If the dtype of indices is not int32 or int64.
TypeError – If dtype of input_x and updates are not the same.
ValueError – If the shape of updates is not equal to indices.shape[:-1] + x.shape[indices.shape[-1]:].
RuntimeError – If the data type of input_x and updates conversion of Parameter is required when data type conversion of Parameter is not supported.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops, Parameter >>> input_x = Parameter(Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8]), mindspore.float32), name="x") >>> indices = Tensor(np.array([[2], [4], [1], [7]]), mindspore.int32) >>> updates = Tensor(np.array([6, 7, 8, 9]), mindspore.float32) >>> output = ops.scatter_nd_sub(input_x, indices, updates, False) >>> print(output) [ 1. -6. -3. 4. -2. 6. 7. -1.] >>> input_x = Parameter(Tensor(np.zeros((4, 4, 4)), mindspore.int32)) >>> indices = Tensor(np.array([[0], [2]]), mindspore.int32) >>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]], ... [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]]), mindspore.int32) >>> output = ops.scatter_nd_sub(input_x, indices, updates, False) >>> print(output) [[[-1 -1 -1 -1] [-2 -2 -2 -2] [-3 -3 -3 -3] [-4 -4 -4 -4]] [[ 0 0 0 0] [ 0 0 0 0] [ 0 0 0 0] [ 0 0 0 0]] [[-5 -5 -5 -5] [-6 -6 -6 -6] [-7 -7 -7 -7] [-8 -8 -8 -8]] [[ 0 0 0 0] [ 0 0 0 0] [ 0 0 0 0] [ 0 0 0 0]]]