mindspore.ops.logcumsumexp
- mindspore.ops.logcumsumexp(input, axis)[source]
Compute the cumulative log-sum-exp of the input tensor input along axis . For example, if input is a tensor [a, b, c] and axis is 0, the output will be [a, log(exp(a) + exp(b)), log(exp(a) + exp(b) + exp(c))].
Warning
This is an experimental API that is subject to change or deletion.
- Parameters
- Returns
Tensor, has the same dtype and shape as the input.
- Raises
TypeError – If input is not a Tensor.
TypeError – If dtype of input is not in [float16, float32, float64].
TypeError – If dtype of axis is not int.
ValueError – If axis is out of range [-rank(input), rank(input)).
- Supported Platforms:
Ascend
CPU
GPU
Examples
>>> import mindspore as ms >>> from mindspore import ops >>> import numpy as np >>> x = ms.Tensor(np.array([1.0, 2.0, 3.0]).astype(np.float32)) >>> output = ops.logcumsumexp(x, 0) >>> print(output) [1. 2.3132617 3.407606 ]