mindspore.ops.clip_by_norm
- mindspore.ops.clip_by_norm(x, max_norm, norm_type=2.0, error_if_nonfinite=False)[source]
Clip norm of a set of input Tensors. This norm is the result of calculating the norm of all elements in the input separately, connecting them into a vector, and then calculating the norm.
Note
The interface is suitable for gradient clipping scenarios, and only supports input of type float.
- Parameters
x (Union(Tensor, list[Tensor], tuple[Tensor])) – Input that wishes to be clipped.
max_norm (Union(float, int)) – The upper limit of the norm for this group of network parameters.
error_if_nonfinite (bool) – If it is
True
, an exception is thrown if the total norm from the input is nan, inf or -inf. If it isFalse
, no exception will be thrown.Default:False
.
- Returns
Tensors, a list or tuple of Tensors, representing clipped Tensors.
- Raises
RuntimeError – If the total norm from the x is nan, inf or -inf.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> from mindspore import Tensor, ops >>> x = Tensor([[0.8748, 0.1425, 0.0076], [0.7721, 0.4084, 0.0552], [4.6376, 0.2914, 2.1120]]) >>> out = ops.clip_by_norm(x, max_norm=1) >>> print(out) [[0.16650201 0.02712224 0.00144652] [0.14695495 0.07773139 0.0105063 ] [0.8826814 0.0554626 0.40198016]]