mindspore.ops.LogUniformCandidateSampler
- class mindspore.ops.LogUniformCandidateSampler(num_true=1, num_sampled=5, unique=True, range_max=5, seed=0)[source]
Generates random labels with a log-uniform distribution for sampled_candidates.
Randomly samples a tensor of sampled classes from the range of integers [0, range_max).
Refer to
mindspore.ops.log_uniform_candidate_sampler()
for more details.- Parameters
num_true (int, optional) – The number of target classes per training example. Default:
1
.num_sampled (int, optional) – The number of classes to randomly sample. Default:
5
.unique (bool, optional) – Determines whether sample with rejection. If unique is
True
, all sampled classes in a batch are unique. Default:True
.range_max (int, optional) – The number of possible classes. When unique is
True
, range_max must be greater than or equal to num_sampled. Default:5
.seed (int, optional) – Random seed, must be non-negative. Default:
0
.
- Inputs:
true_classes (Tensor) - The target classes. With data type of int64 and shape \((batch\_size, num\_true)\) .
- Outputs:
Tuple of 3 Tensors.
sampled_candidates (Tensor) - A Tensor with shape \((num\_sampled,)\) and the same type as true_classes.
true_expected_count (Tensor) - A Tensor with the same shape as true_classes and type float32.
sampled_expected_count (Tensor) - A Tensor with the same shape as sampled_candidates and type float32.
- Supported Platforms:
Ascend
CPU
Examples
>>> import numpy as np >>> from mindspore import Tensor, ops >>> sampler = ops.LogUniformCandidateSampler(2, 5, True, 5) >>> output1, output2, output3 = sampler(Tensor(np.array([[1, 7], [0, 4], [3, 3]]))) >>> print(output1, output2, output3) [3 2 0 4 1] [[0.92312991 0.49336370] [0.99248987 0.65806371] [0.73553443 0.73553443]] [0.73553443 0.82625800 0.99248987 0.65806371 0.92312991]