mindspore.ops.AdamWeightDecay
- class mindspore.ops.AdamWeightDecay(use_locking=False)[source]
Updates gradients by the Adaptive Moment Estimation algorithm with weight decay (AdamWeightDecay).
The Adam algorithm is proposed in Adam: A Method for Stochastic Optimization. The AdamWeightDecay variant was proposed in Decoupled Weight Decay Regularization.
The updating formulas are as follows,
\[\begin{split}\begin{array}{ll} \\ m = \beta_1 * m + (1 - \beta_1) * g \\ v = \beta_2 * v + (1 - \beta_2) * g * g \\ update = \frac{m}{\sqrt{v} + \epsilon} \\ update = \begin{cases} update + weight\_decay * w & \text{ if } weight\_decay > 0 \\ update & \text{ otherwise } \end{cases} \\ w = w - lr * update \end{array}\end{split}\]\(m\) represents the 1st moment vector, \(v\) represents the 2nd moment vector, \(g\) represents gradient, \(\beta_1, \beta_2\) represent beta1 and beta2, \(lr\) represents learning_rate, \(w\) represents var, \(decay\) represents weight_decay, \(\epsilon\) represents epsilon.
- Parameters
use_locking (bool) – Whether to enable a lock to protect variable tensors from being updated. If
True
, updates of the var, m, and v tensors will be protected by a lock. IfFalse
, the result is unpredictable. Default:False
.
- Inputs:
var (Parameter) - Weights to be updated. The shape is \((N, *)\) where \(*\) means, any number of additional dimensions. The data type can be float16 or float32.
m (Parameter) - The 1st moment vector in the updating formula, it should have the the shape as var. The data type can be float16 or float32.
v (Parameter) - The 2nd moment vector in the updating formula, it should have the same shape as m.
lr (float) - \(lr\) in the updating formula. The paper suggested value is \(10^{-8}\), the data type should be float32.
beta1 (float) - The exponential decay rate for the 1st moment estimations, the data type should be float32. The paper suggested value is \(0.9\)
beta2 (float) - The exponential decay rate for the 2nd moment estimations, the data type should be float32. The paper suggested value is \(0.999\)
epsilon (float) - Term added to the denominator to improve numerical stability, the data type should be float32.
decay (float) - The weight decay value, must be a scalar tensor with float32 data type. Default:
0.0
.gradient (Tensor) - Gradient, has the same shape as var.
- Outputs:
Tuple of 3 Tensor, the updated parameters.
var (Tensor) - The same shape and data type as var.
m (Tensor) - The same shape and data type as m.
v (Tensor) - The same shape and data type as v.
- Raises
TypeError – If use_locking is not a bool.
TypeError – If lr, beta1, beta2, epsilon or decay is not a float32.
TypeError – If var, m or v is not a Parameter with dtype float16 or float32.
TypeError – If gradient is not a Tensor.
ValueError – If epsilon <= 0.
ValueError – If beta1, beta2 is not in range (0.0,1.0).
ValueError – If decay < 0.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> import mindspore.nn as nn >>> from mindspore import Tensor, Parameter, ops >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.adam_weight_decay = ops.AdamWeightDecay() ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var") ... self.m = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="m") ... self.v = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="v") ... def construct(self, lr, beta1, beta2, epsilon, decay, grad): ... out = self.adam_weight_decay(self.var, self.m, self.v, lr, beta1, beta2, ... epsilon, decay, grad) ... return out >>> net = Net() >>> gradient = Tensor(np.ones([2, 2]).astype(np.float32)) >>> output = net(0.001, 0.9, 0.999, 1e-8, 0.0, gradient) >>> print(net.var.asnumpy()) [[0.999 0.999] [0.999 0.999]]