mindspore.mint.unique
- mindspore.mint.unique(input, sorted=True, return_inverse=False, return_counts=False, dim=None)[source]
Returns the unique elements of input tensor.
when return_inverse=True, also return a tensor containing the index of each value of input tensor corresponding to the output unique tensor. when return_counts=True, also return a tensor containing the number of occurrences for each unique value or tensor
- Parameters
input (Tensor) – The input tensor.
sorted (bool) – Whether to sort the unique elements in ascending order before returning as output. Default:
True
.return_inverse (bool) – Whether to also return the indices for where elements in the original input ended up in the returned unique list. Default:
False
.return_counts (bool) – Whether to also return the counts for each unique element. Default:
False
.dim (int) – the dimension to operate upon. If
None
, the unique of the flattened input is returned. Otherwise, each of the tensors indexed by the given dimension is treated as one of the elements to apply the unique operation upon. Default:None
.
- Returns
A tensor or a tuple of tensors containing some of tensor objects (output, inverse_indices, counts).
output(Tensor) - The output tensor including the unique elements of input tensor, it has same dtype as input.
inverse_indices(Tensor) - Return when
return_inverse
is True. It represents the indices for where elements in the original input map to in the output. Whendim
isNone
, it has same shape as input, otherwise, the shape is input.shape[dim].counts(Tensor) - Return when
return_counts
is True. It represents the number of occurrences for each unique value or tensor. Whendim
isNone
, it has same shape as output, otherwise, the shape is output.shape(dim).
- Raises
TypeError – If input is not a Tensor.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, mint >>> from mindspore import mint >>> x = Tensor(np.array([1, 2, 5, 2]), mindspore.int32) >>> output = mint.unique(x, return_inverse=True) >>> print(output) (Tensor(shape=[3], dtype=Int32, value= [1, 2, 5]), Tensor(shape=[4], dtype=Int64, value= [0, 1, 2, 1])) >>> y = output[0] >>> print(y) [1 2 5] >>> idx = output[1] >>> print(idx) [0 1 2 1]