mindspore.dataset.transforms.Mask
- class mindspore.dataset.transforms.Mask(operator, constant, dtype=mstype.bool_)[source]
Mask content of the input tensor with the given predicate. Any element of the tensor that matches the predicate will be evaluated to True, otherwise False.
- Parameters
operator (Relational) – relational operators, it can be
Relational.EQ
,Relational.NE
,Relational.LT
,Relational.GT
,Relational.LE
,Relational.GE
, takeRelational.EQ
as example, EQ refers to equal.constant (Union[str, int, float, bool]) – Constant to be compared to.
dtype (mindspore.dtype, optional) – Type of the generated mask. Default:
mstype.bool_
.
- Raises
- Supported Platforms:
CPU
Examples
>>> import mindspore.dataset as ds >>> import mindspore.dataset.transforms as transforms >>> from mindspore.dataset.transforms import Relational >>> >>> # Use the transform in dataset pipeline mode >>> # Data before >>> # | col | >>> # +---------+ >>> # | [1,2,3] | >>> # +---------+ >>> data = [[1, 2, 3]] >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["col"]) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms.Mask(Relational.EQ, 2)) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["col"].shape, item["col"].dtype) (3,) bool >>> # Data after >>> # | col | >>> # +--------------------+ >>> # | [False,True,False] | >>> # +--------------------+ >>> >>> # Use the transform in eager mode >>> data = [1, 2, 3] >>> output = transforms.Mask(Relational.EQ, 2)(data) >>> print(output.shape, output.dtype) (3,) bool