mindspore.dataset.LibriTTSDataset
- class mindspore.dataset.LibriTTSDataset(dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None)[source]
LibriTTS dataset.
The generated dataset has seven columns
[waveform, sample_rate, original_text, normalized_text, speaker_id, chapter_id, utterance_id]
. The tensor of columnwaveform
is of the float32 type. The tensor of columnsample_rate
is of a scalar of uint32 type. The tensor of columnoriginal_text
is of a scalar of string type. The tensor of columnnormalized_text
is of a scalar of string type. The tensor of columnspeaker_id
is of a scalar of uint32 type. The tensor of columnchapter_id
is of a scalar of uint32 type. The tensor of columnutterance_id
is of a scalar of string type.- Parameters
dataset_dir (str) – Path to the root directory that contains the dataset.
usage (str, optional) – Part of this dataset, can be
'dev-clean'
,'dev-other'
,'test-clean'
,'test-other'
,'train-clean-100'
,'train-clean-360'
,'train-other-500'
, or'all'
. Default:None
, means'all'
.num_samples (int, optional) – The number of images to be included in the dataset. Default:
None
, will read all audio.num_parallel_workers (int, optional) – Number of worker threads to read the data. Default:
None
, will use global default workers(8), it can be set bymindspore.dataset.config.set_num_parallel_workers()
.shuffle (bool, optional) – Whether or not to perform shuffle on the dataset. Default:
None
, expected order behavior shown in the table below.sampler (Sampler, optional) – Object used to choose samples from the dataset. Default:
None
, expected order behavior shown in the table below.num_shards (int, optional) – Number of shards that the dataset will be divided into. Default:
None
. When this argument is specified, num_samples reflects the max sample number of per shard.shard_id (int, optional) – The shard ID within num_shards . Default:
None
. This argument can only be specified when num_shards is also specified.cache (DatasetCache, optional) – Use tensor caching service to speed up dataset processing. More details: Single-Node Data Cache . Default:
None
, which means no cache is used.
- Raises
RuntimeError – If dataset_dir does not contain data files.
ValueError – If num_parallel_workers exceeds the max thread numbers.
RuntimeError – If sampler and shuffle are specified at the same time.
RuntimeError – If sampler and num_shards/shard_id are specified at the same time.
RuntimeError – If num_shards is specified but shard_id is None.
RuntimeError – If shard_id is specified but num_shards is None.
ValueError – If shard_id is not in range of [0, num_shards ).
- Tutorial Examples:
Note
Not support
mindspore.dataset.PKSampler
for sampler parameter yet.The parameters num_samples , shuffle , num_shards , shard_id can be used to control the sampler used in the dataset, and their effects when combined with parameter sampler are as follows.
Parameter sampler
Parameter num_shards / shard_id
Parameter shuffle
Parameter num_samples
Sampler Used
mindspore.dataset.Sampler type
None
None
None
sampler
numpy.ndarray,list,tuple,int type
/
/
num_samples
SubsetSampler(indices = sampler , num_samples = num_samples )
iterable type
/
/
num_samples
IterSampler(sampler = sampler , num_samples = num_samples )
None
num_shards / shard_id
None / True
num_samples
DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = True , num_samples = num_samples )
None
num_shards / shard_id
False
num_samples
DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = False , num_samples = num_samples )
None
None
None / True
None
RandomSampler(num_samples = num_samples )
None
None
None / True
num_samples
RandomSampler(replacement = True , num_samples = num_samples )
None
None
False
num_samples
SequentialSampler(num_samples = num_samples )
Examples
>>> import mindspore.dataset as ds >>> libri_tts_dataset_dir = "/path/to/libri_tts_dataset_directory" >>> >>> # 1) Read 500 samples (audio files) in libri_tts_dataset_directory >>> dataset = ds.LibriTTSDataset(libri_tts_dataset_dir, usage="train-clean-100", num_samples=500) >>> >>> # 2) Read all samples (audio files) in libri_tts_dataset_directory >>> dataset = ds.LibriTTSDataset(libri_tts_dataset_dir)
About LibriTTS dataset:
LibriTTS is a multi-speaker English corpus of approximately 585 hours of read English speech at 24kHz sampling rate, prepared by Heiga Zen with the assistance of Google Speech and Google Brain team members. The LibriTTS corpus is designed for TTS research. It is derived from the original materials (mp3 audio files from LibriVox and text files from Project Gutenberg) of the LibriSpeech corpus.
You can construct the following directory structure from LibriTTS dataset and read by MindSpore's API.
. └── libri_tts_dataset_directory ├── dev-clean │ ├── 116 │ │ ├── 288045 | | | ├── 116_288045.trans.tsv │ │ │ ├── 116_288045_000003_000000.wav │ │ │ └──... │ │ ├── 288046 | | | ├── 116_288046.trans.tsv | | | ├── 116_288046_000003_000000.wav │ | | └── ... | | └── ... │ ├── 1255 │ │ ├── 138279 | | | ├── 1255_138279.trans.tsv │ │ │ ├── 1255_138279_000001_000000.wav │ │ │ └── ... │ │ ├── 74899 | | | ├── 1255_74899.trans.tsv | | | ├── 1255_74899_000001_000000.wav │ | | └── ... | | └── ... | └── ... └── ...
Citation:
@article{lecun2010mnist, title = {LIBRITTS handwritten digit database}, author = {zpw, NBU}, journal = {ATT Labs [Online]}, volume = {2}, year = {2010}, howpublished = {http://www.openslr.org/resources/60/}, description = {The LibriSpeech ASR corpus (http://www.openslr.org/12/) [1] has been used in various research projects. However, as it was originally designed for ASR research, there are some undesired properties when using for TTS research} }
Pre-processing Operation
Apply a function in this dataset. |
|
Concatenate the dataset objects in the input list. |
|
Filter dataset by prediction. |
|
Map func to each row in dataset and flatten the result. |
|
Apply each operation in operations to this dataset. |
|
The specified columns will be selected from the dataset and passed into the pipeline with the order specified. |
|
Rename the columns in input datasets. |
|
Repeat this dataset count times. |
|
Reset the dataset for next epoch. |
|
Save the dynamic data processed by the dataset pipeline in common dataset format. |
|
Shuffle the dataset by creating a cache with the size of buffer_size . |
|
Skip the first N elements of this dataset. |
|
Split the dataset into smaller, non-overlapping datasets. |
|
Take the first specified number of samples from the dataset. |
|
Zip the datasets in the sense of input tuple of datasets. |
Batch
Combine batch_size number of consecutive rows into batch which apply per_batch_map to the samples first. |
|
Bucket elements according to their lengths. |
|
Combine batch_size number of consecutive rows into batch which apply pad_info to the samples first. |
Iterator
Create an iterator over the dataset that yields samples of type dict, while the key is the column name and the value is the data. |
|
Create an iterator over the dataset that yields samples of type list, whose elements are the data for each column. |
Attribute
Return the size of batch. |
|
Get the mapping dictionary from category names to category indexes. |
|
Return the names of the columns in dataset. |
|
Return the number of batches in an epoch. |
|
Get the replication times in RepeatDataset. |
|
Get the column index, which represents the corresponding relationship between the data column order and the network when using the sink mode. |
|
Get the number of classes in a dataset. |
|
Get the shapes of output data. |
|
Get the types of output data. |
Apply Sampler
Add a child sampler for the current dataset. |
|
Replace the last child sampler of the current dataset, remaining the parent sampler unchanged. |
Others
Release a blocking condition and trigger callback with given data. |
|
Add a blocking condition to the input Dataset and a synchronize action will be applied. |
|
Serialize a pipeline into JSON string and dump into file if filename is provided. |