Source code for mindspore.ops.silent_check

# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Silent Check."""
import os

from mindspore.common.tensor import Tensor
from mindspore.common.parameter import Parameter
import mindspore.common.dtype as mstype

from . import operations
from .operations._inner_ops import _MirrorSilentCheck
from .operations import RmsNorm as OriginRmsNorm
from .operations import LayerNorm as OriginLayerNorm
from .primitive import Primitive


NPU_ASD_ENABLE = 'NPU_ASD_ENABLE'


[docs]class ASDBase: """ ASDBase is the base class of operator with feature value detection in python. Args: cls (Primitive): Original operator requiring feature value detection. args (tuple): A variable parameter tuple to the original operator. kwargs (dict): A variable parameter dictionary passed the original operator. Supported Platforms: ``Ascend`` Examples: >>> from mindspore.ops.silent_check import ASDBase >>> from mindspore.ops import LayerNorm as OriginLayerNorm >>> class LayerNormASD(ASDBase): ... def __init__(self, *args, **kwargs): ... super().__init__(OriginLayerNorm, *args, **kwargs) ... # init parameters for accuracy-sensitive detection by calling the base class method generate_params() ... self.pre_val, self.min_val, self.max_val, self.cnt = self.generate_params() ... ... def __call__(self, input_x, gamma, beta): ... if self.enable_check: ... # execute accuracy-sensitive detection by calling the check_op of base class ... input_x = self.check_op( ... input_x, self.pre_val, self.min_val, self.max_val, self.cnt, None) ... self.cnt += 1 ... # return the result of original operator ... return self.op(input_x, gamma, beta) """ _index = 0 __ms_class__ = True def __init__(self, cls, *args, **kwargs): self.op = cls(*args, **kwargs) self.check_op = _MirrorSilentCheck() self._suffix = "ASD_" + cls.__name__ primitive_attr = dir(Primitive) self._op_attr_dict = { name for name in primitive_attr if not name.startswith("_")} self.enable_check = os.environ.get(NPU_ASD_ENABLE) == "1" def __getattr__(self, name): def method_wrapper(*args, **kwargs): out = getattr(self.op, name)(*args, **kwargs) if out is self.op: return self return out if name in self._op_attr_dict: if callable(getattr(self.op, name)): return method_wrapper if hasattr(self.op, name): return getattr(self.op, name) return super().__getattr__(self, name) def __repr__(self): return self.op.__repr__()
[docs] def generate_params(self): """ Generate support params for feature value detection. Returns: tuple consisting of four elements. The derived class initializes the parameters required for feature value detection by calling this function. Examples: >>> from mindspore.ops.silent_check import ASDBase >>> from mindspore.ops import LayerNorm as OriginLayerNorm >>> class LayerNormASD(ASDBase): ... def __init__(self, *args, **kwargs): ... super().__init__(OriginLayerNorm, *args, **kwargs) ... # init parameters for feature value detection by calling the base class function ... self.pre_val, self.min_val, self.max_val, self.cnt = self.generate_params() """ pre_val = Parameter(Tensor(0, mstype.float32), name=f"{self._suffix}_pre_val_{self._index}", requires_grad=False) min_val = Parameter(Tensor(0, mstype.float32), name=f"{self._suffix}_min_val_{self._index}", requires_grad=False) max_val = Parameter(Tensor(0, mstype.float32), name=f"{self._suffix}_max_val_{self._index}", requires_grad=False) cnt = Parameter(Tensor(0, mstype.int32), name=f"{self._suffix}_cnt_{self._index}", requires_grad=False) ASDBase._index += 1 return pre_val, min_val, max_val, cnt
class RmsNormASD(ASDBase): """ RmsNorm with ASD. """ def __init__(self, *args, **kwargs): super().__init__(OriginRmsNorm, *args, **kwargs) self.pre_val, self.min_val, self.max_val, self.cnt = self.generate_params() def __call__(self, input_x, gamma): if self.enable_check: input_x = self.check_op( input_x, self.pre_val, self.min_val, self.max_val, self.cnt, None) self.cnt += 1 return self.op(input_x, gamma) class LayerNormASD(ASDBase): """ LayerNorm with ASD. """ def __init__(self, *args, **kwargs): super().__init__(OriginLayerNorm, *args, **kwargs) self.pre_val, self.min_val, self.max_val, self.cnt = self.generate_params() def __call__(self, input_x, gamma, beta): if self.enable_check: input_x = self.check_op( input_x, self.pre_val, self.min_val, self.max_val, self.cnt, None) self.cnt += 1 return self.op(input_x, gamma, beta) def _silent_check(): if os.environ.get(NPU_ASD_ENABLE) == "1": operations.LayerNorm = LayerNormASD operations.RmsNorm = RmsNormASD