Differences with torchvision.datasets.MNIST

View Source On Gitee

torchvision.datasets.MNIST

class torchvision.datasets.MNIST(
    root: str,
    train: bool = True,
    transform: Optional[Callable] = None,
    target_transform: Optional[Callable] = None,
    download: bool = False)

For more information, see torchvision.datasets.MNIST.

mindspore.dataset.MnistDataset

class mindspore.dataset.MnistDataset(
    dataset_dir,
    usage=None,
    num_samples=None,
    num_parallel_workers=None,
    shuffle=None,
    sampler=None,
    num_shards=None,
    shard_id=None,
    cache=None)

For more information, see mindspore.dataset.MnistDataset.

Differences

PyTorch: Read the MNIST dataset. API integrates the transformation operations for image and label.

MindSpore: Read the MNIST dataset. Download dataset from web is not supported. Transforms for image and label depends on mindshare.dataset.map operation.

Categories

Subcategories

PyTorch

MindSpore

Difference

Parameter

Parameter1

root

dataset_dir

-

Parameter2

train

-

Usage of this dataset,supported by usage in MindSpore

Parameter3

transform

-

Supported by mindspore.dataset.map operation

Parameter4

target_transform

-

Supported by mindspore.dataset.map operation

Parameter5

download

-

Not supported by MindSpore

Parameter6

-

usage

Usage of this dataset

Parameter7

-

num_samples

The number of images to be included in the dataset.

Parameter8

-

num_parallel_workers

Number of worker threads to read the data

Parameter9

-

shuffle

Whether to perform shuffle on the dataset

Parameter10

-

sampler

Object used to choose samples from the dataset

Parameter11

-

num_shards

Number of shards that the dataset will be divided into

Parameter12

-

shard_id

The shard ID within num_shards

Parameter13

-

cache

Use tensor caching service to speed up dataset processing

Code Example

# PyTorch
import torchvision.transforms as T
import torchvision.datasets as datasets
from torch.utils.data import DataLoader

root = "/path/to/dataset_directory/"
dataset = datasets.MNIST(root, train=False, transform=T.Resize((32, 32)), download=True)
dataloader = DataLoader(dataset, batch_size=32)

# MindSpore
import mindspore.dataset as ds
import mindspore.dataset.vision as vision

# Download the dataset files, unzip into the following structure
# .
# └── "/path/to/dataset_directory/"
#      ├── t10k-images-idx3-ubyte
#      ├── t10k-labels-idx1-ubyte
#      ├── train-images-idx3-ubyte
#      └── train-labels-idx1-ubyte
root = "/path/to/dataset_directory/"
ms_dataloader = ds.Cifar10Dataset(root, usage='test')
ms_dataloader = ms_dataloader.map(vision.Resize((32, 32)), ["image"])
ms_dataloader = ms_dataloader.batch(32)