mindspore.ops.random_poisson
- mindspore.ops.random_poisson(shape, rate, seed=None, dtype=mstype.float32)[source]
- Generates random number Tensor with shape shape according to a Poisson distribution with mean rate. \[\text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}\]- Parameters
- shape (Tensor) – The shape of random tensor to be sampled from each poisson distribution, 1-D Tensor whose dtype is mstype.int32 or mstype.int64. 
- rate (Tensor) – The \(μ\) parameter the distribution is constructed with. It represents the mean of the distribution and also the variance of the distribution. It should be a Tensor whose dtype is mstype.int64, mstype.int32, mstype.float64, mstype.float32 or mstype.float16. 
- seed (int, optional) – Seed is used as entropy source for the random number engines to generate pseudo-random numbers and must be non-negative. Default: - None, which will be treated as 0.
- dtype (mindspore.dtype) – The data type of output: - mstype.int64,- mstype.int32,- mstype.float64,- mstype.float32or- mstype.float16. Default:- mstype.float32.
 
- Returns
- A Tensor whose shape is mindspore.concat([‘shape’, mindspore.shape(‘rate’)], axis=0) and data type is equal to argument dtype. 
- Raises
- TypeError – If shape is not a Tensor. 
- TypeError – If datatype of shape is not mstype.int64 nor mstype.int32. 
- ValueError – If shape of shape is not 1-D. 
- TypeError – If rate is not a Tensor nor a scalar. 
- TypeError – If datatype of rate is not in [mstype.int64, mstype.int32, mstype.float64, mstype.float32 or mstype.float16]. 
- TypeError – If seed is not a non-negtive int. 
- TypeError – If dtype is not in [mstype.int64, mstype.int32, mstype.float64, mstype.float32 nor mstype.float16]. 
- ValueError – If any element of input shape tensor is not positive. 
 
 - Supported Platforms:
- GPU- CPU
 - Examples - >>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> # case 1: 1-D shape, 2-D rate, float64 output >>> shape = Tensor(np.array([2, 2]), mindspore.int64) >>> rate = Tensor(np.array([[5.0, 10.0], [5.0, 1.0]]), mindspore.float32) >>> output = ops.random_poisson(shape, rate, seed=5, dtype=mindspore.float64) >>> print(output.shape, output.dtype) (2, 2, 2, 2) Float64 >>> # case 2: 1-D shape, scalar rate, int64 output >>> shape = Tensor(np.array([2, 2]), mindspore.int64) >>> rate = Tensor(5.0, mindspore.float64) >>> output = ops.random_poisson(shape, rate, seed=5, dtype=mindspore.int64) >>> print(output.shape, output.dtype) (2, 2) Int64