mindspore.ops.margin_ranking_loss
- mindspore.ops.margin_ranking_loss(input1, input2, target, margin=0.0, reduction='mean')[source]
MarginRankingLoss creates a criterion that measures the loss.
Given two tensors \(input1\), \(input2\) and a Tensor label \(target\) with values 1 or -1, the operation is as follows:
\[\text{loss}(input1, input2, target) = \max(0, -target * (input1 - input2) + \text{margin})\]- Parameters
input1 (Tensor) – Tensor of shape \((N, *)\) where \(*\) means, any number of additional dimensions.
input2 (Tensor) – Tensor of shape \((N, *)\), same shape and dtype as input1.
target (Tensor) – Contains value 1 or -1. Suppose the shape of input1 is \((x_1, x_2, x_3, ..., x_R)\), then the shape of target must be \((x_1, x_2, x_3, ..., x_R)\).
margin (float, optional) – Specify the adjustment factor of the operation. Default:
0.0
.reduction (str, optional) –
Apply specific reduction method to the output:
'none'
,'mean'
,'sum'
. Default:'mean'
.'none'
: no reduction will be applied.'mean'
: compute and return the mean of elements in the output.'sum'
: the output elements will be summed.
- Returns
Tensor or Scalar. if reduction is
"none"
, its shape is the same as labels. Otherwise, a scalar value will be returned.- Raises
TypeError – If margin is not a float.
TypeError – If input1, input2 or target is not a Tensor.
TypeError – If the types of input1 and input2 are inconsistent.
TypeError – If the types of input1 and target are inconsistent.
ValueError – If the shape of input1 and input2 are inconsistent.
ValueError – If the shape of input1 and target are inconsistent.
ValueError – If reduction is not one of
'none'
,'mean'
,'sum'
.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore as ms >>> from mindspore import Tensor, ops >>> import numpy as np >>> input1 = Tensor(np.array([0.3864, -2.4093, -1.4076]), ms.float32) >>> input2 = Tensor(np.array([-0.6012, -1.6681, 1.2928]), ms.float32) >>> target = ops.Sign()(Tensor(np.array([-2, -2, 3]), ms.float32)) >>> output = ops.margin_ranking_loss(input1, input2, target) >>> print(output) 1.2293333